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FUNDAMENTALS OF MECHANICS 

Topic 1. Kinematics of translational and rotational motion. 

 

General problem-solving strategy: 

1. Carefully read the text of the problem. Study any representations of the 

information (for example, diagrams, graphs, tables) that accompany the problem. 

Analize the given data and recall what physical laws they are subject to. Simplify the 

problem. Remove the details that are not important to the solution. For example, model 

a moving object as a particle. If appropriate, ignore air resistance or friction between a 

sliding object and a surface. 

2. Make a short record of the data. Write in the column on the left all the values 

given in the task and the values you need to find. It is better to express all the numerical 

data in the Universal system of units (SI). 

3. If a pictorial representation is not provided, make a quick drawing of the 

situation. Indicate any known values directly on your sketch. 

4. Write the general form of an equation or a system of equations that represent 

the physical process described in the problem. 

5. If equations are in the vector form, represent them in the scalar form by finding 

projections onto the coordinate axes Ox, Oy and Oz. 

6. Analyzing conditions of the problem, express the general equations only in 

terms of the physical values that are mentioned in the problem or can be taken from the 

tables of physical constants.  

7. Use algebra (and calculus, if necessary) to solve the equations symbolically 

for the unknown variable in terms of what is given. Obtain the "working formula". 

8. Make calculations. Substitute in the appropriate numbers, calculate the result, 

and round it to the proper number of significant figures. 

9. Make verification of the units, substituting them into the "working formula". 

The resulting unit must coincide with the units of the found physical value. 
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Example 1.1 Definitions of the kinematic variables. 

Position vector of a particle is changing with time according to the equation 

23 2r t i tj k   . Determine velocity, acceleration and magnitudes of the velocity and 

acceleration at the moment t = 1 s. What is the path covered by the particle during the 

11-th second of motion? 

Solution: 

According to the definition, velocity vector equals to the time derivative of the 

position vector: 

6 2
dr

v ti j
dt

   . 

The speed  

2 2 2 2 2(6 ) (2) 36 4x yv v v t t      . 

Acceleration vector is the time derivative of the velocity vector: 

6
dv

a i
dt

  . 

Its magnitude a = 6. 

At the moment t = 1 s 

6 2v i j   (m/s); 2 10v  (m/s); 6a i (m/s2); a = 6 (m/s2). 

The path covered by the particle during the 11-th second of motion is equal to 

the magnitude of the displacement vector between the 11-th and the 10-th seconds of 

motion: 

2 2 2(11) (10) 3(11 10 ) 2(11 10) 63 2 63 4 63s r r r i j i j             (m). 

 

Example 1.2 Projectile motion. 

Two bodies are thrown horizontally from the same point but in the opposite 

directions with initial speeds v01 = 3 m/s and v02 = 4 m/s. Find the distance between the 

bodies at the moment when their velocity vectors become perpendicular to each other.   

 

 



6 
 

Solution: 

 

Figure 1.1. 

When to vectors are perpendicular 

to each other their dot product equals 

zero. So,  

1 2 0v v  ,  

where 1v  and 2v  are the velocity vectors 

of the first and second body, respectively. 

As we know,  

1 2 1 2 1 2x x y yv v v v v v   . 

We need to find components of the velocity for the two bodies. Free fall of the 

object is the case of the uniformly accelerated motion with the acceleration due to 

gravity a g  (the projectile motion). The kinematic equation for the velocity in such 

case is given by the formula  

0v v gt  . 

where 0v  is the initial velocity of the body. 

Let’s find projections of this equations onto the coordinate axes Ox and Oy for 

the two bodies (see Figure 1.1.): 

1 01

1

x

y

v v

v gt

 


 
;  

2 02

2

x

y

v v

v gt




 
. 

Substituting these values into the expression for the dot product, we obtain: 

 
2

01 02 0v v gt    , 

and the moment of time when the velocity vectors become perpendicular to each other 

is 

01 02v v
t

g


 . 

Now we can find the distance between the two bodies using the formula 

   
2 2

1 2 1 2d x x y y    , 

where x1, y1, x2, y2 are coordinates of the first and second bodies.  
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The kinematic equation for the position vector in the case of uniformly 

accelerated motion is given by the formula 

2

0 0
2

gt
r r v t   , 

and its projections onto the coordinate axes Ox and Oy for the two bodies are: 

1 01

2

1
2

x v t

gt
y h

 



 


;  
2 02

2

2
2

x v t

gt
y h





 


. 

As we see, y1 = y2, then 

 
2

1 2 1 2 01 02 01 02( )d x x x x v t v t v v t         , 

and substituting the fond expression for t we obtain: 

01 02

01 02( )
v v

d v v
g


  . 

Calculations: 

3 4
(3 4) 2.47

9.8
d


   (m). 

 

Example 1.3 Untypical curvilinear motion 

An air balloon starts to rise vertically from the ground at constant velocity of 

magnitude v0. It acquires horizontal component of the velocity due to the wind, vx = 

αy, where α is a coefficient, y is an elevation of the balloon above the ground. Find the 

drift of the balloon x(y) and its acceleration. 

Solution: 

As given, components of the velocity of the air balloon are: 

0

x

y

v y

v v





. 

We know that x

dx
v

dt
  and y

dy
v

dt
 . Let’s transform the equations for the 

velocity components to express them only in terms of the coordinates x and y. 
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dx
y

dt
 ;  

dx dy
y

dt dy
  ;  

dx dy
y

dy dt
  , 

but 0y

dy
v v

dt
  , and we obtain 

0

dx
v y

dy
  . 

Now we can separate variables and take integral of the both sides of the equation 

considering the fact that the balloon starts to rise from the ground, that is its initial 

coordinates equal zero: 

0v dx ydy ; 0

0 0

yx

v dx ydy  ; 
2

0
2

y
v x


 . 

So, the drift of the balloon 

2

02
x y

v


 . 

Now let’s find the acceleration of the balloon. Its components  

0

( )x
x

y

y

dv d y
a

dt dt

dv dv
a

dt dt


 


  


. 

We see that the vertical component ay = 0 because v0 is constant. The horizontal 

component is  

0x y

dy
a v v

dt
       . 

So the total acceleration of the balloon is directed horizontally and equal to 

0a v  . 

 

Example 1.4 Total, tangential and radial acceleration. 

A stone is thrown horizontally with the initial speed v0 = 30 m/s from the certain 

height. Define its speed, tangential and radial acceleration at the moment t = 2 s from 

the beginning of the motion. 
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Solution: 

 

Figure 1.2. 

This is the case of the projectile motion with the 

free-fall acceleration. The kinematic equation for the 

velocity of the stone is given by the formula  

0v v gt  . 

Components of the velocity are (see Figure 1.2.) 

0x

y

v v

v gt




 
.  

Then the speed of the stone can be found as 

2 2 2 2 2

0x yv v v v g t    . 

By definition, the tangential acceleration of the body is due to the changing 

magnitude of the velocity (changing speed), that is  

 2 2 2 2

0
2 2 2

0

1
2

2

dv d
a v g t g t

dt dt v g t
     


. 

So, 
2

2 2 2

0

g t
a

v g t
 


. 

The radial acceleration is due to the change in direction of the velocity, but the 

radius of the curvature of the trajectory is unknown. However, we know the total 

acceleration of the stone, which is equal to the free-fall acceleration g. Then,  

2 2

rg a a  ; 

4 2
2 2 2 0

2 2 2 2 2 2
0 0

r

g t v g
a g a g

v g t v g t
    

 
. 

Calculations: 

2 2 230 9.8 2 35.8v     (m/s) 

2

2 2 2

9.8 2
5.37

30 9.8 2
a


 

 
 (m/s2) 

2 2 2

30 9.8
8.21

30 9.8 2
ra


 

 
 (m/s2) 
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Example 1.5 Circular motion 

A disk of radius R = 20 cm is rotating according to the equation φ = A + Bt + 

Ct3, where A = 3 rad, B = -1 rad/s, C = 0.1 rad/s3. Find the tangential, radial and total 

acceleration of the points on the rim of the disk at the moment t = 10 s. 

Solution: 

Magnitude of the tangential acceleration  

dv d
a R

dt dt



  ,  

where ω is the angular speed of the point. Angular speed can be found as the time 

derivative of the angular position: 

3
2( )

3
d d A Bt Ct

B Ct
dt dt




 
    . 

Then, 

2( 3 )
6

d B Ct
a R CtR

dt



  . 

Magnitude of the radial acceleration  

 
2

2
2 23r

v
a R B Ct R

R
    . 

Magnitude of the total acceleration 

2 2

ra a a  . 

Calculations: 

6 0.1 10 0.2 1.2a      (m/s2) 

 
2

21 3 0.1 10 0.2 168.2ra       (m/s2) 

2 21.2 168.2 168.2a    (m/s2) 
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Problems 

1. A person walks first at a constant speed of 5.00 m/s along a straight line from point 

A to point B and then back along the line from B to A at a constant speed of 3.00 

m/s. (a) What is her average speed over the entire trip? (b) What is her average 

velocity over the entire trip? 

2. A particle moves according to the equation x = 10t2, where x is in meters and t is in 

seconds. (a) Find the average velocity for the time interval from 2.00 s to 3.00 s. (b) 

Find the average velocity for the time interval from 2.00 to 2.10 s. 

3. A particle moves along the x axis according to the equation  x = 2.00 + 3.00t – 1.00t2, 

where x is in meters and t is in seconds. At t = 3.00 s, find (a) the position of the 

particle, (b) its velocity, and (c) its acceleration. 

4. A cannon shell is fired straight up from the ground at an initial speed of 225 m/s. 

After how much time is the shell at a height of 620 m above the ground and moving 

downward? 

5. An arrow is shot straight up in the air at an initial speed of 15.0 m/s. After how much 

time is the arrow moving downward at a speed of 8.00 m/s? 

6. The driver of a car slams on the brakes when he sees a tree blocking the road. The 

car slows uniformly with an acceleration of - 5.60 m/s2 for 4.20 s, making straight 

skid marks 62.4 m long, all the way to the tree. With what speed does the car then 

strike the tree? 

7. A particle moves along the x axis. Its position is given by the equation x = 2 + 3t – 

4t2, with x in meters and t in seconds. Determine (a) its position when it changes 

direction and (b) its velocity when it returns to the position it had at t = 0. 

8. A rock is thrown downward from the top of a 40.0-m-tall tower with an initial speed 

of 12 m/s. Assuming negligible air resistance, what is the speed of the rock just 

before hitting the ground? 

9. On another planet, a marble is released from rest at the top of a high cliff. It falls 

4.00 m in the first 1 s of its motion. Through what additional distance does it fall in 

the next 1 s? 
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10. A pebble is released from rest at a certain height and falls freely, reaching an 

impact speed of 4 m/s at the floor. Next, the pebble is thrown down with an initial 

speed of 3 m/s from the same height. What is its speed at the floor? 

11. A ball is thrown directly downward with an initial speed of 8.00 m/s from a 

height of 30.0 m. After what time interval does it strike the ground? 

12. The height of a helicopter above the ground is given by h = 3.00t3, where h is in 

meters and t is in seconds. At t = 2.00 s, the helicopter releases a small mailbag. How 

long after its release does the mailbag reach the ground? 

13. A man drops a rock into a well. (a) The man hears the sound of the splash 2.40 

s after he releases the rock from rest. The speed of sound in air (at the ambient 

temperature) is 336 m/s. How far below the top of the well is the surface of the 

water? (b) If the travel time for the sound is ignored, what percentage error is 

introduced when the depth of the well is calculated? 

14. The vector position of a particle varies in time according to the expression 

23 6r i t j  . Find expressions for the velocity and acceleration of the particle as a 

function of time. 

15. The coordinates of an object moving in the xy plane vary with time according to 

the equations 5sinx t   and 5cosy t . (a) Determine the components of 

velocity of the object at t = 0. (b) Determine the components of acceleration of the 

object at t = 0. (c) Write expressions for the position vector, the velocity vector, and 

the acceleration vector of the object at any time t >0. (d) Describe the path of the 

object in an xy plot. 

16. A particle initially located at the origin has an acceleration of 3a j  m/s2 and 

an initial velocity of 0 5v i  m/s. Find (a) the vector position of the particle at any 

time t, (b) the velocity of the particle at any time t, (c) the coordinates of the particle 

at t = 2.00 s, and (d) the speed of the particle at t = 2.00 s 

17. A projectile is launched on the Earth with a certain initial velocity and moves 

without air resistance. Another projectile is launched with the same initial velocity 

on the Moon, where the acceleration due to gravity is one-sixth as large. How does 
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the range of the projectile on the Moon compare with that of the projectile on the 

Earth? 

18. A projectile is fired in such a way that its horizontal range is equal to three times 

its maximumv height. What is the angle of projection? 

19. A firefighter, a distance d from a burning building, directs a stream of water from 

a fire hose at angle α above the horizontal. If the initial speed of the stream is v0, at 

what height h does the water strike the building? 

20. A landscape architect is planning an artificial waterfall in a city park. Water 

flowing at 1.70 m/s will leave the end of a horizontal channel at the top of a vertical 

wall h = 2.35 m high, and from there it will fall into a pool. Will the space behind 

the waterfall be wide enough for a pedestrian walkway? 

21. A soccer player kicks a rock horizontally off a 40.0-m-high cliff into a pool of 

water. If the player hears the sound of the splash 3.00 s later, what was the initial 

speed given to the rock? Assume the speed of sound in air is 343 m/s. 

22. A car travels due east with a speed of 50.0 km/h. Raindrops are falling at a 

constant speed vertically with respect to the Earth. The traces of the rain on the side 

windows of the car make an angle of 60.0° with the vertical. Find the velocity of the 

rain with respect to (a) the car and (b) the Earth. 

23. Lisa in her Lamborghini accelerates at the rate of (3 2 )i j  m/s2, while Jill in 

her Jaguar accelerates at ( 3 )i j  m/s2. They both start from rest at the origin of an 

xy coordinate system. After 5.00 s, (a) what is Lisa’s speed with respect to Jill, (b) 

how far apart are they, and (c) what is Lisa’s acceleration relative to Jill? 
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Topic 2. Dynamics of translational motion. Forces.  

 

General strategy for solving problems using the Newton’s laws: 

1. Conceptualize. Draw a simple, neat free-body diagram of the system. 

Establish convenient coordinate axes for each object in the system. 

2. Categorize. If an acceleration component for an object is zero, the object is 

modeled as a particle in equilibrium in this direction and 
1

0
n

i

i

F


 . If not, the object is 

modeled as a particle under a net force in this direction and 
1

n

i

i

F ma


 . 

3. Analyze. Isolate the object whose motion is being analyzed. Draw a free-body 

diagram for this object. For systems containing more than one object, draw separate 

free-body diagrams for each object. Do not include in the free-body diagram forces 

exerted by the object on its surroundings.  

Find the components of the forces along the coordinate axes: 

1

n

ix x

i

F ma


 ; 
1

n

iy y

i

F ma


 ; 
1

n

iz z

i

F ma


 . 

Check your dimensions to make sure that all terms have units of force. 

Solve the component equations for the unknowns. Remember that you generally 

must have as many independent equations as you have unknowns to obtain a complete 

solution. 

4. Finalize. Make sure your results are consistent with the free-body diagram. 

Also check the predictions of your solutions for extreme values of the variables. By 

doing so, you can often detect errors in your results. 
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Example 2.1. A body on the inclined plane. 

A block slides down an incline of angle α = 300 and length l = 2 m in time t = 

2 s. Find the coefficient of kinetic friction between the block and the surface of the 

incline.  

Solution: 

 

Figure 2.1. 

The gravitational force, the friction force 

and the normal force are acting on the block. 

According to the Newton’s second law, 

frma mg F N   . 

Let’s choose the Ox axis along the incline and the 

Oy axis perpendicular to it (see Figure 2.1). 

Then projections of the Newton’s second law onto the coordinate axes are 

: sin

:0 cos

frOx ma mg F

Oy mg N





 


  
. 

We see that the normal force for the body on the incline 

cosN mg  . 

Then, the friction force  

cosfrF N mg    ,  

where μ is the coefficient of friction. After the substitution we obtain: 

sin cosma mg mg    ;  sin cosa g g    ; 

sin

cos cos

g a a
tg

g g


 

 


   . 

We see that the acceleration of the block is constant and we can use the kinematic 

equation for the uniformly accelerated motion in order to find it:  
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2 2

0 0
2 2

x
x

a t a t
x x v t    , 

as the initial coordinate and the initial speed of the block equal zero and its acceleration 

is directed along the Ox axis. The length of the path equals l, and 

2

2

a t
l  ; 

2

2l
a

t
 . 

Finally, 

2

2

cos

l
tg

gt
 


  . 

Calculations: 

0

2 0

2 2
30 0.46

9.8 2 cos30
tg


  


 

 

Example 2.2 Body under the changing force. 

A small body starts to slide down the incline of angle α. The coefficient of kinetic 

friction depends on the covered distance according to the relation μ = γx, where γ is a 

constant, x is the distance. Find the path covered by the body before it stops. 

Solution: 

The Newton’s second law for the body on the incline is  

frma mg F N   . 

Its projections onto the Ox and Oy axes (see Figure 2.1) are 

: sin

:0 cos

frOx ma mg F

Oy mg N





 


  
. 

The force of friction is changing with the coordinate of the body: 

cos cosfrF N mg xmg       .  
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After the substitution we obtain: 

sin cosma mg xmg    ;   

(sin cos )a g x     . 

When the body stops, its speed equals zero. Acceleration and speed are related 

by the formula 
dv

a
dt

 . From the expression for the acceleration which we have 

obtained we see that it is changing with distance x. So let’s express this equality only 

in terms of variables x and v: 

dv dv dx dv dx dv
a v

dt dt dx dx dt dx
       , 

as 
dx

v
dt

 . Then, 

(sin cos )
dv

v g x
dx

      ;  (sin cos )v dv g x dx      . 

After integration we obtain 

2 2

(sin cos ) (sin cos )
2 2 2

v x
g x gx x


          . 

Now we can find that when v = 0,  

sin cos 0
2

x


    ,  

and 

2
x tg


 . 
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Example 2.3 Two objects connected by a cord 

A block of mass m1 and a block of mass m2 are attached by a lightweight cord 

that passes over a frictionless pulley of negligible mass as in Figure 2.2. The block m2 

lies on a frictionless incline of angle α. Find the magnitude of the acceleration of the 

two objects and the tension in the cord. 

Solution: 

 

Figure 2.2. 

Let’s assume that m2 moves down 

the incline, then m1 moves upward. 

Because the objects are connected by a 

cord (which we assume is massless and 

does nor stretch), their accelerations 

have the same magnitude. 

Consider the free-body diagrams for the bodies (Figure 2.2). The force of friction 

is absent because the incline is frictionless. Now we should write the Newton’s second 

law for each of the bodies separately: 

1 1 1m g T m a  ; 

2 2 2m g T N m a   . 

The two bodies are interacting with each other through the cord, so we should 

apply the Newton’s third law for the tension in the cord: 

T1 = T2 = T. 

Now let’s write Newton’s second law in component form.  

For the first body let’s choose the upward direction as positive: 

1 1m g T ma   . 

For the second body let’s choose the Ox axis along the incline: 
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2 2 sinm a m g T  . 

Now we can express the tension 1( )T m a g   from the first equation and 

substitute it into the second equation: 

2 2 1sin ( )m a m g m a g   . 

Solve for a: 

2 1

1 2

sinm m
a g

m m

 
 


. 

Use this expression for a to find T:  

2 1
1 1 2

1 2 1 2

sin sin 1m m
T m g g m m g

m m m m

     
      

    
. 

The block m2 accelerates down the incline only if 2 1sinm m  . Otherwise, the 

acceleration is up the incline for the block m2 and downward for the block m1.  

 

Example 2.4 Two bodies in contact with each other 

A block of mass m1 = 2 kg is placed on the horizontal surface of the table. 

Coefficient of the kinetic friction between the block and the surface is μ1 = 0.2. A 

second block of mass m2 = 8 kg is placed upon the first block. Coefficient of the kinetic 

friction between the blocks is μ2 = 0.3. A constant horizontal force F is applied to m2. 

Find the magnitude of this force when the upper block starts to slide relative to the 

bottom block. 

Solution: 
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(a) 

Figure 2.3. 

(b) 

As the upper block is heavier, the force applied to it causes the motion of the 

bottom block as well due to the friction between them. The both blocks must experience 

the same acceleration because they are in contact with each other and remain in contact 

throughout the motion.  

When the blocks start to slide against each other we should consider each of the 

two blocks individually by categorizing each as an object under a net force. Let’s 

construct a diagram of forces acting on the object for each block as shown in Figures 

2.3a and 2.3b. 

First, apply Newton’s second law to m2 (Figure 2.3a). The force F , gravitational 

force 2m g , friction force against the surface of the bottom block 2frF  and normal force 

against the bottom block 2N  are acting on it. 

2 2 2 2frF m g F N m a    . 

In the component form: 

2 2

2 2

:

: 0

frOx m a F F

Oy m g N

 


  
. 

We see, that the normal force acting on m2 is 2 2N m g , and the friction force 

on the upper block sliding against the bottom block is  

2 2 2 2 2frF N m g   .  

Now we can express the force F: 
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2 2 2 2 2frF m a F m a m g    . 

To find the unknown acceleration a we now need to consider the motion of the 

bottom block (Figure 2.3b). Gravitational force 1m g , friction force against the surface 

of the table 1frF  and normal force against the table 1N  are acting on it. However, as the 

bottom block is in contact with the upper block, the third Newton’s law of action and 

reaction must be applied to it. The blocks interact through the friction between them, 

and the bottom block starts to move because the friction force 2frF  is exerted on it by 

the upper block. Moreover, the surface of the bottom block causes the normal force on 

the upper block, and the same force 2N  of the opposite direction is exerted by the upper 

block on the bottom block. Considering all these forces, we can apply Newton’s second 

law to the bottom block: 

1 1 2 1 2 1fr frm g F F N N m a     . 

In the component form: 

1 1 2

1 1 2

:

: 0

fr frOx m a F F

Oy m g N N

  


   
. 

From the second equation we find that the normal force acting on bottom block 

against the surface of the table is 
1 1 2 1 2( )N m g N g m m    , because the upper block 

is pressing on the bottom block. Then the friction force on the bottom block sliding on 

the table is  

1 1 1 1 1 2( )frF N m m g    .  

We can substitute this formula into the expression to find a: 

1 2 1 1 2 2 2

1 1

( )fr frF F m m g m g
a

m m

     
  . 

Then the force F 
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1 1 2 2 2 2
2 2 2 2 1 1 2

1 1

( )
( )( )

m m g m g m
F m m g g m m

m m

 
  

  
     . 

Calculations: 

8
9.8 (0.3 0.2)(2 8) 39.2

2
F     (N) 

 

Problems 

1. Besides the gravitational force, a 2.80-kg object is subjected to one other constant 

force. The object starts from rest and in 1.20 s experiences a displacement of 

(4.2 3.3 )i j  m, where the direction of j  is the upward vertical direction. 

Determine the other force. 

2. A force F  applied to an object of mass m1 produces an acceleration of 3.00 m/s2. 

The same force applied to a second object of mass m2 produces an acceleration of 

1.00 m/s2. (a) What is the value of the ratio m1/m2? (b) If m1 and m2 are combined 

into one object, find its acceleration under the action of the force F . 

3. Two forces 1F  and 2F  act on a 5.00-kg object. Taking F1 = 20.0 N and F2 = 15.0 N, 

find the accelerations of the object if the vectors of the forces make an angle of (a) 

900 (b) 600 with respect to each other. 

4. A 15.0-kg block rests on the floor. (a) What force does the floor exert on the block? 

(b) A rope is tied to the block and is run vertically over a pulley. The other end is 

attached to a free-hanging 10.0-kg object. What now is the force exerted by the floor 

on the 15.0-kg block? (c) If the 10.0-kg object in part (b) is replaced with a 20.0-kg 

object, what is the force exerted by the floor on the 15.0-kg block? 

5. Three forces acting on an object are given by 1 ( 2 2 )F i j    N, 2 (5 3 )F i j   N, 

3 ( 45 )F i   N. The object experiences an acceleration of magnitude 3.75 m/s2. (a) 

What is the direction of the acceleration? (b) What is the mass of the object? (c) If 

the object is initially at rest, what is its speed after 10.0 s? (d) What are the velocity 

components of the object after 10.0 s? 
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6. A block slides down a frictionless plane having an inclination of α = 15.0°. The 

block starts from rest at the top, and the length of the incline is 2.00 m. (a) Draw a 

free-body diagram of the block. Find (b) the acceleration of the block and (c) its 

speed when it reaches the bottom of the incline. 

7. A 3.00-kg object is moving in a plane, with its x and y coordinates given by x = 5t2 

– 1 and y = 3t3 + 2, where x and y are in meters and t is in seconds. Find the magnitude 

of the net force acting on this object at t = 2.00 s. 

8. The distance between two telephone poles is 50.0 m. When a 1.00-kg bird lands on 

the telephone wire midway between the poles, the wire sags 0.200 m. (a) Draw a 

free-body diagram of the bird. (b) How much tension does the bird produce in the 

wire? Ignore the weight of the wire. 

9. A bag of cement of mass 32.5 kg hangs in equilibrium from 

three wires as suggested in Figure 2.4. Two of the wires 

make angles θ1 = 60.0° and θ2 = 40.0° with the horizontal. 

Assuming the system is in equilibrium, find the tensions T1, 

T2, and T3 in the wires. 

 

 

Figure 2.4. 

10. An object of mass m1 = 5.00 kg placed on a frictionless, 

horizontal table is connected to a string that passes over a 

pulley and then is fastened to a hanging object of mass m2 = 

9.00 kg as shown in Figure 2.5. (a) Draw free-body 

diagrams of both objects. Find (b) the magnitude of the 

acceleration of the objects and (c) the tension in the string. 
 

Figure 2.5. 
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11. Two objects are connected by a light string that passes 

over a frictionless pulley as shown in Figure 2.6. Assume 

the incline is frictionless and take m1 = 2.00 kg, m2 = 6.00 

kg, and θ = 55.0°. (a) Draw free-body diagrams of both 

objects. Find (b) the magnitude of the acceleration of the 

objects, (c) the tension in the string, and (d) the speed of 

each object 2.00 s after it is released from rest.  

Figure 2.6 

12. In the system shown in Figure 2.7, a 

horizontal force Fx acts on an object of 

mass m2 = 8.00 kg. The horizontal surface 

is frictionless. Consider the acceleration 

of the sliding object as a function of Fx. 
 

Figure 2.7. 

(a) For what values of Fx does the object of mass m1 = 2.00 kg accelerate upward? 

(b) For what values of Fx is the tension in the cord zero? 

13. A rifle bullet with a mass of 12.0 g traveling toward the right at 260 m/s strikes 

a large bag of sand and penetrates it to a depth of 23.0 cm. Determine the magnitude 

and direction of the friction force (assumed constant) that acts on the bullet. 

14. A car is traveling at 50.0 km/h on a horizontal highway. What is the stopping 

distance when the surface is dry and μ = 0.600? 

15. A 25.0-kg block is initially at rest on a horizontal surface. A horizontal force of 

75.0 N is required to set the block in motion, after which a horizontal force of 60.0 

N is required to keep the block moving with constant speed. Find (a) the coefficient 

of static friction and (b) the coefficient of kinetic friction between the block and the 

surface. 

16. A 3.00-kg block starts from rest at the top of a 30.0° incline and slides a distance 

of 2.00 m down the incline in 1.50 s. Find (a) the magnitude of the acceleration of 

the block, (b) the coefficient of kinetic friction between block and plane, (c) the 

speed of the block after it has slid 2.00 m. 
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17. A woman at an airport is towing her 20.0-kg suitcase at constant speed by pulling 

on a strap at an angle θ above the horizontal. She pulls on the strap with a 35.0-N 

force, and the friction force on the suitcase is 20.0 N. (a) Draw a free-body diagram 

of the suitcase. (b) What angle does the strap make with the horizontal? (c) What is 

the magnitude of the normal force that the ground exerts on the suitcase? 

18. A 9.00-kg hanging object is connected by a light, inextensible cord over a light, 

frictionless pulley to a 5.00-kg block that is sliding on a flat table (Fig. 2.5). Taking 

the coefficient of kinetic friction as 0.200, find the tension in the string. 

19. Three objects are connected 

on a table as shown in 

Figure 2.8. The coefficient of 

kinetic friction between the 

block of mass m2 and the table 

is 0.350.  

Figure 2.8. 

The objects have masses of m1 = 4.00 kg, m2 = 1.00 kg, and m3 = 2.00 kg, and the 

pulleys are frictionless. (a) Draw a free body diagram of each object. (b) Determine 

the acceleration of each object, including its direction. (c) Determine the tensions in 

the two cords. (d) If the tabletop were smooth, would the tensions increase, decrease, 

or remain the same? 

20. Two blocks connected by a rope of 

negligible mass are being dragged by a 

horizontal force (Fig. 2.9).  

Figure 2.9. 

Suppose F = 68.0 N, m1 = 12.0 kg, m2 = 18.0 kg, and the coefficient of kinetic friction 

between each block and the surface is 0.100. (a) Draw a free-body diagram for each 

block. Determine (b) the acceleration of the system and (c) the tension T in the rope. 
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21. A block of mass m = 2.00 kg is 

released from rest at h = 0.500 m above 

the surface of a table, at the top of a θ = 

30.0° incline as shown in Figure 2.10. 

The frictionless incline is fixed on a 

table of height H = 2.00 m. (a) 

Determine the acceleration of the block 

as it slides down the incline. 

 

Figure 2.10. 

(b) What is the velocity of the block as it leaves the incline? (c) How far from the 

table will the block hit the floor? (d) What time interval elapses between when the 

block is released and when it hits the floor? (e) Does the mass of the block affect 

any of the above calculations? 

22. Calculate the force required to pull a copper ball of radius 2.00 cm upward 

through a fluid at the constant speed 9.00 cm/s. Take the drag force to be 

proportional to the speed, with proportionality constant 0.950 kg/s. Ignore the 

buoyant force. 
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Topic 3. Linear momentum. The law of conservation of linear momentum. 

Example 3.1. Impulse  

In a particular crash test, a car of mass 1500 kg collides with a wall. The initial 

and final speeds of the car are vi = 15 m/s and vf = 2.6 m/s, respectively. If the collision 

lasts 0.150 s, find the impulse caused by the collision and the average net force exerted 

on the car. 

Solution: 

The collision time is short, so we can imagine the car being brought to rest very 

rapidly and then moving back in the opposite direction with a reduced speed. 

Then the change in the linear momentum of the car is 

( )i f i fp p p m v v     , 

and its magnitude, considering the opposite directions of the velocity before and after 

collision,  

( ( )) ( )i f i fp m v v m v v      . 

Let us assume the net force exerted on the car by the wall and friction from the 

ground is large compared with other forces on the car (such as air resistance). 

Furthermore, the gravitational force and the normal force exerted by the road on the 

car are perpendicular to the motion and therefore do not affect the horizontal 

momentum.  

Therefore, we categorize the problem as one in which we can apply the impulse 

approximation in the horizontal direction. We also see that the car’s momentum 

changes due to an impulse from the environment.  

Therefore, the impulse applied to the car equals the change in its linear 

momentum  

( )i fF t p m v v     . 

The average net force exerted on the car: 
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p
F

t





. 

Calculations: 

31500(15 2.6) 26.4 10F t     (N∙s) 

3
426.4 10

17.6 10
0.15

F


    (N) 

 

Example 3.2. The law of conservation of linear momentum 

A ball of mass m = 0.3 kg, moving with a velocity v = 10 m/s, elastically hits a 

smooth stationary wall so that its velocity is directed at an angle α = 30° to the surface 

normal. Determine the momentum p obtained by the wall. 

Solution: 

 

Figure 3.1. 

First, we analyze condition of the problem. The 

wall is stationary, so the reference frame associated with 

it is inertial. The collision is elastic; therefore, we can use 

the law of conservation of mechanical energy. As far as 

the mass of the wall is much larger than the mass of the 

ball, the absolute values of velocities of the ball |v| before 

and |u| after the impact must be equal. 

To determine the momentum obtained by the wall, we use the law of 

conservation of the linear momentum:  

1 1 'p p p  , 

where 
1p mv  and 

1 'p mu  are the momentums of the ball before and after the 

impact, p  is the momentum received by the wall. Let’s write projection of this equation 

onto the coordinate axes Ox and Oy (see Figure 3.1): 

Ox:  cos cos 'mv mu p    ; 
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Oy:  sin sin 'mv mu  . 

Let us show that the angle of reflection α’ is equal to the angle of incidence α. 

Since the wall is smooth, then projections of the vectors v  and u  onto the Oy axis must 

be equal: uy = vy. Taking into account that |v| = |u|, we obtain sin sin '  , hence α’ = 

α. Then, cos cosmv mv p    . 

Hence the momentum received by the wall, p , is co-directional with the Ox axis 

and its magnitude is 2 cosp mv  . 

Let’s perform the calculations: 

p = 2∙0.3∙10∙
2

3  kg∙m/s = 5.20 kg∙m/s. 

  

Example 3.3. Relative motion  

A boat of length L and mass M is at rest on the calm pond. The boat is 

perpendicular to the shore, facing it with its bow. A man of mass m is standing at the 

stern. At what distance s does the boat approach the shore if the man moves from the 

stern to the bow of the boat? The resistance is negligible. 

Solution: 

Let’s assume that the man walks at a constant speed. In such case the boat moves 

uniformly too. Therefore, the displacement of the boat relative to the shore is 

determined by the formula  

s = vt, 

where v is the speed of the boat relative to the shore; t is the time of motion of the man 

and the boat. The direction of motion of the man is taken as positive. 

We find the speed v of the boat using the law of conservation of the linear 

momentum. Since, according to the problem condition, the man-boat system was 

initially at rest relative to the shore, then  
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Mv + mu = 0,  

where v is the boat's speed relative to the shore, u is the man's speed relative to the 

shore.  

However, the man is moving in the reference frame (boat) which is moving 

relative to the shore. According to the Galilean velocity addition law,  

L
u v

t
  , 

where u is the man’s speed relative to the “shore” frame, v is the speed of the “boat” 

frame relative to the “shore” frame, 
L

t
 is the man's speed relative to the “boat” frame; 

the negative sign indicates that the velocities of the man and the boat have opposite 

direction. 

Then we find that 

0
L

Mv m v
t

 
   

 
; 

( )

mL
v

m M t



. 

The time of the boat's motion is equal to the time of the man's motion across the 

boat, so the displacement of the boat is  

( )

mL
s vt

m M
 


. 

 

Example 3.4. Collision of two bodies 

A 1500-kg car traveling east with a speed of 25.0 m/s collides at an intersection 

with a 2500-kg truck traveling north at a speed of 20.0 m/s. Find the direction and 

magnitude of the velocity of the wreckage after the collision, assuming the vehicles 

stick together after the collision. 
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Solution: 

 

Figure 3.2. 

Let’s model the vehicles as particles. The collision 

is perfectly inelastic because the car and the truck stick 

together after the collision. Because we consider moments 

immediately before and immediately after the collision as 

defining our time interval, we ignore the small effect that 

friction would have on the wheels of the vehicles and model 

the system of two vehicles as isolated in terms of momentum. Then, according to the 

law of conversation of the linear momentum of the system, the initial and final 

momenta of the system must be equal: 

1 2i i fp p p  , 

where 1 1 1i ip m v  is the initial momentum of the car, 
2 2 2i ip m v  is the initial 

momentum of the truck, 1 2( )f fp m m v   is the momentum of the wreckage after the 

collision (see Figure 3.2).  

Let us choose east to be along the positive x direction and north to be along the 

positive y direction and assume that the wreckage moves at an angle θ with respect to 

the x axis. Then we can write the law of conversation of the linear momentum in 

projections onto the coordinate axes: 

1 1 1 2

2 2 1 2

: ( ) cos

: ( ) sin

i f

i f

Ox m v m m v

Oy m v m m v





 


 

. 

By dividing the Oy projection on the Ox projection we obtain  

2 2

1 1

i

i

m v
tg

m v
  ; 2 2

1 1

i

i

m v
arctg

m v


 
  

 
. 

Knowing the value of the angle θ we can find the final speed as 

2 2

1 2( )sin

i
f

m v
v

m m 



. 
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Calculations: 

02500 20
53.1

1500 25
arctg

 
  

 
; 

0

2500 20
15.6

(1500 2500)sin53.1
fv


 


(m/s) 

 

Problems 

1. A car of mass m traveling at speed v crashes into the rear of a truck of mass 2m that 

is at rest and in neutral at an intersection. If the collision is perfectly inelastic, what 

is the speed of the combined car and truck after the collision?  

2. A 2-kg object moving to the right with a speed of 4 m/s makes a head-on, elastic 

collision with a 1-kg object that is initially at rest. Find the velocity of the 1-kg object 

after the collision. 

3. A 57.0-g tennis ball is traveling straight at a player at 21.0 m/s. The player volleys 

the ball straight back at 25.0 m/s. If the ball remains in contact with the racket for 

0.060 0 s, what average force acts on the ball? 

4. At one instant, a 17.5-kg sled is moving over a horizontal surface of snow at 3.50 

m/s. After 8.75 s has elapsed, the sled stops. Use a momentum approach to find the 

average friction force acting on the sled while it was moving. 

5. A 45.0-kg girl is standing on a 150-kg plank. Both are originally at rest on a frozen 

lake that constitutes a frictionless, flat surface. The girl begins to walk in the 

direction along the plank at a constant speed of 1.50 m/s relative to the plank. (a) 

What is the velocity of the plank relative to the ice surface? (b) What is the girl’s 

velocity relative to the ice surface? 

6. A 1 200-kg car traveling initially at vCi = 25.0 m/s in an easterly direction crashes 

into the back of a 9 000-kg truck moving in the same direction at vTi = 20.0 m/s. The 

velocity of the car immediately after the collision is vCf = 18.0 m/s to the east. What 

is the velocity of the truck immediately after the collision? 

7. A 10.0-g bullet is fired into a stationary block of wood having mass m 55.00 kg. The 

bullet imbeds into the block. The speed of the bullet-plus-wood combination 
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immediately after the collision is 0.600 m/s. What was the original speed of the 

bullet? 

8. Two automobiles of equal mass approach an intersection. One vehicle is traveling 

with speed 13.0 m/s toward the east, and the other is traveling north with speed v2i. 

Neither driver sees the other. The vehicles collide in the intersection and stick 

together, leaving parallel skid marks at an angle of 55.00 north of east. The speed 

limit for both roads is 60 km/h, and the driver of the northward-moving vehicle 

claims he was within the speed limit when the collision occurred. Is he telling the 

truth? 

9. An object of mass 3.00 kg, moving with an initial velocity of 5 i  m/s, collides with 

and sticks to an object of mass 2.00 kg with an initial velocity of –3 j  m/s. Find the 

final velocity of the composite object. 

10. A billiard ball moving at 5.00 m/s strikes a stationary ball of the same mass. 

After the collision, the first ball moves at 4.33 m/s at an angle of 30.00 with respect 

to the original line of motion. Assuming an elastic collision (and ignoring friction 

and rotational motion), find the struck ball’s velocity after the collision. 

11. A 3.00-kg steel ball strikes a wall with a speed 

of 10.0 m/s at an angle of θ = 60.00 with the surface. 

It bounces off with the same speed and angle (Fig. 

3.3). If the ball is in contact with the wall for 0.200 

s, what is the average force exerted by the wall on 

the ball?  

Figure 3.3. 
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Topic 4. Jet motion. Non-inertial reference frames. 

 

Example 4.1. Rocket propulsion 

A 5000 kg rocket moving in space, far from all other objects, has a speed of 

3∙103 m/s relative to the Earth. Its engines are turned on, and fuel is ejected in a 

direction opposite the rocket’s motion at a speed of 5∙103 m/s relative to the rocket. 

What is the speed of the rocket relative to the earth once the rocket’s mass is reduced 

to half its mass before ignition? What is the thrust on the rocket and the acceleration 

due to it if the fuel is burnt at the rate of 50 kg/s? 

Solution: 

The equation for the speed of the rocket propulsion is  

0
0 lnv v

M
u

M
  , 

where v0 is the initial speed of the rocket relative to the earth, u is the speed of the 

ejected fuel relative to the rocket, 0 2
M

M
  according to the conditions of the problem. 

3 3 33 10 5 10 2 6.5 10lnv       (m/s) 

The equation of the rocket propulsion is 

F
dt

dM
Ma u ,  

where F  is the net external force on the system; when the rocket moves in space  

F =0; 50
dt

dM
  kg/s is the rate at which the fuel is burnt. So, 

dt

dM
Ma u  

The thrust on the rocket is 
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Thrust
dt

dM
u ;  

3 55 10 50 2.5 10Thrust       (N) 

Acceleration of the rocket  

dt

u dM
a

M
 ; 

35 10 50
50

5000
a

 
 (m/s2) 

 

Example 4.2. 

A 3500 kg helicopter with a rotor of diameter 18 m is hanging in the air. What 

is the speed u of the air flow blown down by the rotor? Consider diameter of the flow 

equal to the diameter of the rotor.  

Solution: 

The helicopter is hanging in the air due to the thrust exerted by the repelled air 

flow. The equation of the jet motion is 

air
h F

dt

dm
m a u , 

where hF m g  because the helicopter is located in the gravitational field of the Earth; 

hm  is the mass of the helicopter; airm  is the mass of the air and air

dt

dm
 is change in 

mass of the air adjacent to the rotor.  

As far as the helicopter is hanging at one place and not moving, its acceleration 

a = 0. Then, 

0 air
hg

dt

dm
m u  . 

Mass of the air 

2

4
air air air air

d
V Sh hm


     , 
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where ρair is the density of the air, V = Sh is the volume of the air layer adjacent to the 

rotor, 
2

4

d
S


  is its cross-sectional area. Then, 

2 2 2

4 4 4

air
air air air

d d d dh d
h u

dt dt dt

dm   
  
 

   
 

, 

because change in the height of the air layer with time equals to the speed of its flow 

dh
u

dt
 . 

After substitution we obtain 

2 2 2

4 4
h air air

d d u
g um u

 
   , 

and solving for u: 

2

4 h

air

g

d

m
u

 
 . 

Calculations: 

2
10.2

1.29 18

4 3500 9.8
u






 
 (m/s) 

 

Example 4.3.  

A trolley with sand is moving along the horizontal surface under a constant 

horizontal force F . The sand is pouring down through a hole in the bottom of the 

trolley at constant speed μ kg/s. Find the speed and acceleration of the trolley at the 

moment t if at the moment t = 0 the trolley is at rest and has a mass m0. Friction is 

negligible. 
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Solution: 

As far as the sand is pouring away from the trolley, its mass is changing during 

motion. The equation of its motion is: 

netF
dt

dm
m a u , 

where netF F mg  ; 
dt

dm
   is the rate of changing mass (the negative sign is 

because the mass is decreasing), and 

m a F m g u  . 

Let’s write this equation in projection onto the direction of motion. As far as the 

sand is pouring vertically down, projection of its velocity onto the horizontal direction 

is zero. We obtain 

Fm a  ;  
F

a
m

 . 

Let’s find mass of the trolley at the moment t: 

dt

dm
  ; dtdm   . 

We can take integral of this equality: 

0 0

m t

m

dtdm    ; 
0m m t  . 

Then, the acceleration of the trolley is 

0

F
a

m t



. 

Speed of the trolley can be found as 
0

t

v adt   considering that the initial speed 

of the trolley is zero. Then, 
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0

0
0

0 00

ln( ) ln

t

tF F F m t
v dt m t

m t m




  

 
       

  
 . 

That is, 

0

0

ln
F m

v
m t 

 
  

 
. 

 

Example 4.4. Noninertial reference frames. Translational inertial force. 

A tanker with kerosene moves with acceleration a = 0.7 m/s2. What angle α does 

the kerosene level make with respect to the horizontal? 

Solution: 

 

Figure 4.1. 

Consider a mass element on the kerosene 

surface. Normal force exerted by the 

underlying kerosene and gravitational force 

are acting on it (see Figure 4.1). However, 

relative to the reference frame associated 

with the tanker, the level of the kerosene is  

at rest and makes angle α with the horizontal. So its acceleration is zero. Therefore, in 

that noninertial frame we introduce a fictitious force in the horizontal direction to 

balance the horizontal component of the normal force.  

Newton’s second law for the element on the kerosene surface can be written as  

0 trN mg F   , 

where trF ma   is the translational inertial force due to the accelerated translational 

motion of the frame associated with the tanker. 

Let’s apply Newton’s second law in component form: 

: 0 sin

: 0 cos

Ox N ma

Oy N mg





 


 
; 

sin

cos

ma N

mg N









. 
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By finding the ratio of these expressions, we obtain 

a
tg

g
  ; 

a
arctg

g


 
  

 
  

Calculations: 

00.7
4

9.8
arctg

 
  

 
. 

 

Example 4.5. Noninertial reference frames. Centrifugal inertial force. 

A vessel with water rotates at a frequency of 2 s-1 about a vertical axis. Water 

surface takes form of paraboloid. What angle α does the water surface make with the 

horizontal at distance R = 5 cm from the axis of rotation? 

Solution: 

 

Figure 4.2. 

Consider a mass element on the water surface in 

the noninertial reference frame associated with the 

rotating vessel. The mass element is under the action of 

normal force exerted by the underlying water, 

gravitational force and centrifugal force resulting from 

the rotation of the reference frame. Since the mass 

element is motionless relative to the vessel, the net force 

must be zero. 

Newton’s second law for the element on the water surface can be written as  

0 centrN mg F   , 

where 2

centrF m Rn  is the centrifugal inertial force due to the rotation of the frame 

associated with the vessel; ω = 2πυ is the angular speed of rotation, R is the distance 

from the axis of rotation. 
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Let’s apply Newton’s second law in component form choosing the Ox axis 

directed tangent to the surface (see Figure 4.2): 

:0 0 sin coscentrOx mg F    ; 

2sin (2 ) cosmg m R   ; 

2 24 R
tg

g

 
  ;  

2 24 R
arctg

g

 


 
  

 
. 

Calculations: 

2 2
04 2 0.05

40
9.8

arctg



  

  
 

. 

 

Example 4.6. Noninertial reference frames. Coriolis inertial force. 

A small clutch of mass m freely slides along a smooth horizontal rod which is 

rotated at a constant angular velocity   about a fixed vertical axis passing through one 

of its ends. Find the horizontal component of the force exerted on the clutch by the rod 

at the moment when it is at a distance r from the axis of rotation. (At the initial moment 

the clutch is directly near the axis and has a negligible speed.) 

Solution:  

 

Figure 4.3. 

Consider motion of the clutch in the rotating 

reference frame associated with the rod. In that 

frame the clutch moves along a straight line, which 

means that the force N  exerted on the clutch by the 

rod is balanced by the Coriolis force (see Figure 

4.3, top view): 

 2 ,corN F m v     . 
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We need to find the speed v of the clutch relative to the rod. In our frame of 

reference, in the direction along the rod the clutch moves under the action of the 

centrifugal inertial force. So the Newton’s second law may be written as: 

centrma F ; 

2dv
m m r

dt
 ;  2dv

r
dt

  

Let’s express this equation in the variables v and r: 

dv dr dv dr dv
v

dt dr dr dt dr
     . 

Then  

2dv
v r

dr
  ;  2vdv rdr . 

Integrating the last equation with the initial conditions (v0 = 0, r0 = 0), we find  

2 2 2

2 2

v r
 ; 

v = ωr. 

In vector form, v r . So, the force  

   2 , 2 ,N m r m r     ; 

N = 2mω2r. 

 

Problems 

Jet motion 

1. A model rocket engine has an average thrust of 5.26 N. It has an initial mass of 25.5 

g, which includes fuel mass of 12.7 g. The duration of its burn is 1.90 s. (a) What is 

the average exhaust speed of the engine? (b) This engine is placed in a rocket body 

of mass 53.5 g. What is the final velocity of the rocket if it were to be fired from rest 
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in outer space by an astronaut on a spacewalk? Assume the fuel burns at a constant 

rate. 

2. The first stage of a Saturn V space vehicle consumed fuel and oxidizer at the rate of 

15000 kg/s with an exhaust speed of 2600 m/s. (a) Calculate the thrust produced by 

this engine. (b) Find the acceleration the vehicle had just as it lifted off the launch 

pad on the Earth, taking the vehicle’s initial mass as 3.00∙106kg. 

3. A rocket for use in deep space is to be capable of boosting a total load (payload plus 

rocket frame and engine) of 3.00 tons to a speed of 10 000 m/s. It has an engine and 

fuel designed to produce an exhaust speed of 2000 m/s. How much fuel plus oxidizer 

is required? 

Accelerated frames 

1. Two blocks, each of mass m = 3.50 kg, are hung from the 

ceiling of an elevator as in Figure 4.4. (a) If the elevator 

moves with an upward acceleration of magnitude a = 1.60 

m/s2, find the tensions T1 and T2 in the upper and lower 

strings. (b) If the strings can withstand a maximum tension 

of 85.0 N, what maximum acceleration can the elevator 

have before a string breaks? 

 

 

Figure 4.4 

2. A light string can support a stationary hanging load 

of 25.0 kg before breaking. An object of mass m = 

3.00 kg attached to the string rotates on a 

frictionless, horizontal table in a circle of radius r = 

0.800 m, and the other end of the string is held fixed 

as in Figure 4.5. What range of speeds can the 

object have before the string breaks? 
 

Figure 4.5. 
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3. Consider a conical pendulum (Fig. 4.6) with a bob of mass m = 80.0 

kg on a string of length L = 10.0 m that makes an angle of θ = 5.000 

with the vertical. Determine (a) the period of rotation and (b) the 

radial acceleration of the bob. 

 
 

Figure 4.6. 

4. A 40.0-kg child swings in a swing supported by two chains, each 3.00 m long. The 

tension in each chain at the lowest point is 350 N. Find (a) the child’s speed at the 

lowest point and (b) the force exerted by the seat on the child at the lowest point. 

(Ignore the mass of the seat.) 

5. An adventurous archeologist (m 585.0 kg) tries to cross a river by swinging from a 

vine. The vine is 10.0 m long, and his speed at the bottom of the swing is 8.00 m/s. 

The archeologist doesn’t know that the vine has a breaking strength of 1 000 N. Does 

he make it across the river without falling in? 

6. An object of mass m = 0.500 kg is suspended 

from the ceiling of an accelerating truck as 

shown in Figure 4.7. Taking a = 3.00 m/s2, find 

(a) the angle θ that the string makes with the 

vertical and (b) the tension T in the string.  

Figure 4.7. 

7. A truck is moving with constant acceleration a 

up a hill that makes an angle ϕ with the horizontal 

as in Figure 4.8. A small sphere of mass m is 

suspended from the ceiling of the truck by a light 

cord. If the pendulum makes a constant angle θ 

with the perpendicular to the ceiling, what is a?  

Figure 4.8. 

8. A small container of water is placed on a turntable inside a microwave oven, at a 

radius of 12.0 cm from the center. The turntable rotates steadily, turning one 

revolution in each 7.25 s. What angle does the water surface make with the 

horizontal? 
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9. A child’s toy consists of a small wedge that has an acute 

angle θ (Fig. 4.9). The sloping side of the wedge is 

frictionless, and an object of mass m on it remains at 

constant height if the wedge is spun at a certain constant 

speed. The wedge is spun by rotating, as an axis, a 

vertical rod that is firmly attached to the wedge at the 

bottom end. Find the speed of the object when it sits at 

rest at a point at distance L up along the wedge. 

 

 

Figure 4.9. 
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Topic 5. Energy, work, power. The law of conservation of the total 

mechanical energy. 

 

Example 5.1. Collision of two bodies. 

Two balls with masses m1 = 2.5 kg and m2 = 1.5 kg move towards each other at 

speeds v1 = 6 m/s and v2 = 2 m/s. Determine: 1) the speed u of the balls after the impact; 

2) the kinetic energies of the balls T1 before and T2 after the impact; 3) the fraction of 

the kinetic energy of the balls that is converted into the internal energy. The impact is 

considered as direct and inelastic. 

Solution 

1) As the impact is inelastic, the balls after the impact move together at the same 

velocity u . Let us determine this velocity according to the law of conservation of the 

linear momentum:  

1 1 2 2 1 2( )mv m v m m u   . 

Let’s take the direction of the velocity of the first ball as positive. Then, since 

the balls move along a straight line, this law can be written in a scalar form:  

m1v1 – m2v2 = (m1 + m2)u,  

and, 

1 1 2 2

1 2

m v m v
u

m m





. 

The calculations: 

u = (2.5∙6 – 1.5∙2)/(2.5 + 1.5) m/s = 3 m/s. 

2) The kinetic energies of the balls before and after the impact are determined 

by the formulas 

2 2

1 1 2 2
1

2 2

m v m v
T   ;  

2

1 2
2

( )

2

m m u
T


 . 
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After calculations we obtain 

T1 = (2.5∙62/2 + 1.5∙22/2) J = 48 J; 

T2 = (2.5 + 1.5) 32 J = 18 J. 

3) Comparing kinetic energies of the balls before and after the inelastic collision, 

we see decrease in their kinetic energy, due to which their internal energy has 

increased. The fraction of the kinetic energy of the balls causing increase in their 

internal energy can be determined from the relation: 

1 2T T
w

T


 ; w = 0.62. 

 

Example 5.2. Situations involving kinetic friction. 

A 3.00-kg crate slides down a ramp. The ramp is 1.00 m in length and inclined 

at an angle of 300 as shown in Figure 5.1. The crate starts from rest at the top and 

continues to move a short distance on the horizontal floor after it leaves the ramp. The 

coefficient of kinetic friction of the ramp and the floor is 0.3. Use energy methods to 

determine the speed of the crate at the bottom of the ramp. How far does the crate slide 

on the horizontal floor? 

Solution: 

 

Figure 5.1. 

We identify the crate, the 

surface, and the Earth as the 

system. The system is categorized 

as isolated with a nonconservative 

force of friction acting on the body. 
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Because the initial speed of the crate is zero, the initial kinetic energy of the 

system when the crate is at the top of the ramp is zero. If the y coordinate is measured 

from the bottom of the ramp (the final position of the crate, for which we choose the 

gravitational potential energy of the system to be zero) with the upward direction being 

positive, then the initial elevation of the crate is sinh l   . The potential energy of 

the system decreases, whereas the kinetic energy increases.  

The expression for the total mechanical energy of the system when the crate is 

at the top: 

1 sintotalE U mgl   . 

When the crate slides down its potential energy transforms into kinetic energy 

and work against friction. At the bottom of the ramp 

2

2
2

total fr fr

mv
E K A A    , 

where negative sign of the work indicates that it is done by the system. The work by 

friction along the ramp is 

0

l

fr fr frA F dr F l     

(the negative sign appears because the force of friction frF  and the displacement vector 

dr  of the body are always in opposite directions). So,                     

2

2
2

total fr

mv
E F l  . 

By applying the Newton’s second law for the body sliding down the incline, we 

can find the force of friction on the crate 

cosfrF N mg    . 

Now we can equate the expressions for the total mechanical energy: 

1 2total totalE E ; 
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2

sin cos
2

mv
mgl mg l     ;  

2

(sin cos )
2

v
gl     ; 

2 (sin cos )v gl     . 

Substitute numerical values: 

0 02 9.8 1 (sin30 0.3cos30 ) 2.17v       (m/s). 

Now consider the crate sliding on the horizontal floor. In this case the potential 

energy of the system remains fixed and the mechanical energy of the system consists 

only of kinetic energy. We can apply the work- kinetic energy theorem: 

fr f iA K K  ,  

where the work by friction along the path s before the crate stops is fr frA F s  ; the 

final kinetic energy of the crate Kf = 0; the initial kinetic energy of the crate is its kinetic 

energy at the bottom of the ramp 
2

(sin cos )
2

i

mv
K mgl      . 

After substitution we obtain 

0 (sin cos )frF s mgl       ;  
(sin cos )

fr

mgl
s

F

  
 . 

Applying the Newton’s second law for the body on the horizontal surface, we 

can find the force of friction on the crate sliding on the floor 

frF N mg   . 

Then, 

(sin cos ) (sin cos )mgl l
s

mg

     

 

 
  . 

Calculations: 

0 01 (sin30 0.3cos30 )
0.8

0.3
s

 
  (m) 
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Example 5.3. Ballistic pendulum 

The ballistic pendulum (Figure 5.2) is an apparatus used to measure the speed of 

a fast-moving projectile such as a bullet. A projectile of mass m1 is fired into a large 

block of wood of mass m2 suspended from some light wires. The projectile embeds in 

the block, and the entire system swings through a height h. How can we determine the 

speed of the projectile from a measurement of h? 

Solution: 

 

Figure 5.2. 

The projectile and the block form 

an isolated system in terms of momentum 

if we identify configuration A as 

immediately before the collision and 

configuration B as immediately after the 

collision.  

Because the projectile imbeds in the block, we can categorize the collision 

between them as perfectly inelastic.  

For the moments immediately before and after the collision we can use the law 

of conservation of the linear momentum: 

A Bp p , 

where 1Ap m v  is the momentum of the projectile before the impact; 
1 2( )Bp m m u   

is the momentum of the block with the embedded projectile after the impact. In 

trojection onto the direction of motion 

1 1 2( )m v m m u  . 

Then the speed of the projectile–block system immediately after the collision  

1

1 2

m v
u

m m



. 
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For the process during which the projectile–block combination swings upward 

to height h (ending at a configuration we’ll call C), we focus on a different system, that 

of the projectile, the block, and the Earth. We categorize this part of the problem as one 

involving an isolated system for energy with no nonconservative forces acting.  

We can use the law of conservation of the total mechanical energy. The kinetic 

energy of the projectile–block combination immediately after the collision is 

2 2 2

1 2 1

1 2

( )

2 2( )
B

m m u m v
K

m m


 


. 

This kinetic energy of the system immediately after the collision is less than the 

initial kinetic energy of the projectile as is expected in an inelastic collision. 

Let’s define the gravitational potential energy of the system for configuration B 

to be zero. Therefore, UB = 0, whereas  

1 2( )CU m m gh  . 

Applying the conservation of mechanical energy principle to the system: 

KB = UC; 

2 2

1
1 2

1 2

( )
2( )

m v
m m gh

m m
 


, 

and solving to define the speed of the projectile v: 

1 2

1

( )
2

m m
v gh

m


 . 

 

Example 5.4.  

A small body A slides off the top of a smooth sphere of radius R. Find the angle 

θ between the vertical and the position vector of the body drawn from the center of the 

sphere at the moment when the body comes off the surface of the sphere. Find the speed 

of the body at that moment (its initial speed is negligibly small). 
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Solution:  

 

Figure 5.3. 

The Newton’s second law for the 

body moving on the smooth surface is: 

ma mg N  . 

At the moment when the body comes off 

the surface, the normal force disappears 

N = 0, and then a g . 

Let’s take the Ox axis tangent to the surface of the sphere at that point, and the 

Oy axis in the radial direction. Then (see Figure 5.3) 

sina g  ;  cosra g  . 

Radial acceleration 
2

r

v
a

R
 , consequently, the speed of the body at the moment 

it comes off the surface is  

cosv gR  . 

Let’s us the law of conservation of the total mechanical energy for the body. As 

far as its initial speed is considered zero, at the highest point of the sphere it has only 

the gravitational potential energy  

grU mg h  , 

where the elevation cosh R R     (see Figure 5.3). The potential energy has 

transformed into the kinetic energy of the body: 

2

2

mv
mg h  . 

Then, 

2 cos
(1 cos )

2 2

v gR
gR


   . 

After transformations we obtain 



52 
 

2
cos

3
  . 

So, the speed of the body  

2

3
v gR . 

 

Problems: 

1. A 10.0-g bullet is fired into a 200-g block of wood at rest on a horizontal surface. 

After impact, the block slides 8.00 m before coming to rest. If the coefficient of 

friction between the block and the surface is 0.400, what is the speed of the bullet 

before impact? 

2. A wad of sticky clay of mass m is hurled horizontally at a wooden block of mass M 

initially at rest on a horizontal surface. The clay sticks to the block. After impact, 

the block slides a distance d before coming to rest. If the coefficient of friction 

between the block and the surface is μ, what was the speed of the clay immediately 

before impact? 

3. A block of mass m = 2.50 kg is pushed a distance d = 2.20 m along a frictionless, 

horizontal table by a constant applied force of magnitude F = 16.0 N directed at an 

angle θ = 25.00 below the horizontal. Determine the work done on the block by (a) 

the applied force, (b) the normal force exerted by the table, (c) the gravitational 

force, and (d) the net force on the block. 

4. Figure 5.4 shows three points 

in the operation of the ballistic 

pendulum. The projectile 

approaches the pendulum in 

Figure 5.4a. 
 

                  (a)                    (b)                                  (c) 

Figure 5.4. 
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Figure 5.4b shows the situation just after the projectile is captured in the pendulum. 

In Figure 5.4c, the pendulum arm has swung upward and come to rest at a height h 

above its initial position. Find the ratio of the kinetic energy of the projectile–

pendulum system immediately after the collision to the kinetic energy immediately 

before. 

5. A wooden block of mass M rests on a table over a 

large hole as in Figure 5.5. A bullet of mass m with 

an initial velocity of vi is fired upward into the 

bottom of the block and remains in the block after 

the collision. The block and bullet rise to a 

maximum height of h. Find an expression for the 

initial velocity of the bullet. 

 

Figure 5.5. 

6. Two blocks of masses m1 = 2.00 kg and m2 = 4.00 kg are released from rest at a 

height of h = 5.00 m on a frictionless track as shown in Figure 5.6. When they meet 

on the level portion of the track, they undergo a head-on, elastic collision. Determine 

the maximum heights to which m1 and m2 rise on the curved portion of the track after 

the collision. 

 

Figure 5.6. 
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7. A bullet of mass m is fired into a 

block of mass M initially at rest at 

the edge of a frictionless table of 

height h (Fig. 5.7). The bullet 

remains in the block, and after 

impact the block lands a distance d 

from the bottom of the table.  

 

Figure 5.7. 

Determine the initial speed of the bullet. 

8. George of the Jungle, with mass m, swings on a light vine hanging from a stationary 

tree branch. A second vine of equal length hangs from the same point, and a gorilla 

of larger mass M swings in the opposite direction on it. Both vines are horizontal 

when the primates start from rest at the same moment. George and the gorilla meet 

at the lowest point of their swings. Each is afraid that one vine will break, so they 

grab each other and hang on. They swing upward together, reaching a point where 

the vines make an angle of 35.00 with the vertical. Find the value of the ratio m/M. 

9. A force (6 2 )F i j   N acts on a particle that undergoes a displacement 

(3 )r i j    m. Find (a) the work done by the force on the particle and (b) the angle 

between F  and r . 

10. A force (4 3 )F xi yj  , where F is in newtons and x and y are in meters, acts 

on an object as the object moves in the x direction from the origin to x = 5.00 m. 

Find the work done by the force on the object. 

11. A 100-g bullet is fired from a rifle having a barrel 0.600 m long. Choose the 

origin to be at the location where the bullet begins to move. Then the force (in 

newtons) exerted by the expanding gas on the bullet is 15000 + 10000x – 25000x2, 

where x is in meters. Determine the work done by the gas on the bullet as the bullet 

travels the length of the barrel. 

12. A 0.600-kg particle has a speed of 2.00 m/s at point A and kinetic energy of 7.50 

J at point B. What is (a) its kinetic energy at A, (b) its speed at B, and (c) the net 

work done on the particle by external forces as it moves from A to B? 
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13. A worker pushing a 35.0-kg wooden crate at a constant speed for 12.0 m along 

a wood floor does 350 J of work by applying a constant horizontal force of 

magnitude F on the crate. Determine the value of F. 

14. A 3.00-kg object has a velocity (6 )i j  m/s. (a) What is its kinetic energy at 

this moment? (b) What is the net work done on the object if its velocity changes to 

(8 4 )i j  m/s.  

15. A 7.80-g bullet moving at 575 m/s strikes the hand of a superhero, causing the 

hand to move 5.50 cm in the direction of the bullet’s velocity before stopping. (a) 

Use work and energy considerations to find the average force that stops the bullet. 

(b) Assuming the force is constant, determine how much time elapses between the 

moment the bullet strikes the hand and the moment it stops moving. 

16. A baseball outfielder throws a 0.150-kg baseball at a speed of 40.0 m/s and an 

initial angle of 30.00 to the horizontal. What is the kinetic energy of the baseball at 

the highest point of its trajectory? 

17. A 40-kg child is in a swing that is attached to a pair of ropes 2.00 m long. Find 

the gravitational potential energy of the child–Earth system relative to the child’s 

lowest position when (a) the ropes are horizontal, (b) the ropes make a 30.00 angle 

with the vertical, and (c) the child is at the bottom of the circular arc. 

18. The potential energy of a system of two particles separated by a distance r is 

given by U(r) = A/r, where A is a constant. Find the radial force Fr that each particle 

exerts on the other. 

19. A potential energy function for a system in which a two dimensional force acts 

is of the form U = 3x3y – 7x. Find the force that acts at the point (x, y). 

20. An inclined plane of angle θ = 20.00 has 

a spring of force constant k = 500 N/m 

fastened securely at the bottom so that the 

spring is parallel to the surface as shown in 

Figure 5.8. A block of mass m = 2.50 kg is 

placed on the plane at a distance d  = 0.300 

m from the spring. 

 

Figure 5.8. 
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From this position, the block is projected downward toward the spring with speed v 

= 0.750 m/s. By what distance is the spring compressed when the block momentarily 

comes to rest? 

21. A block of mass m = 2.00 kg is attached to 

a spring of force constant k = 500 N/m as 

shown in Figure 5.9. The block is pulled to a 

position xi = 5.00 cm to the right of 

equilibrium and released from rest. Find the 

speed the block has as it passes through 

equilibrium if 

 

Figure 5.9. 

(a) the horizontal surface is frictionless and (b) the coefficient of friction between 

block and surface is μ = 0.350. 

22. A crate of mass 10.0 kg is pulled up a rough incline with an initial speed of 1.50 

m/s. The pulling force is 100 N parallel to the incline, which makes an angle of 20.00 

with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 

5.00 m. (a) How much work is done by the gravitational force on the crate? (b) How 

much work is done by the 100-N force on the crate? (c) What is the change in kinetic 

energy of the crate? (d) What is the speed of the crate after being pulled 5.00 m? 

23. The coefficient of friction between the block of 

mass m1 = 3.00 kg and the surface in Figure 5.10 is μ 

= 0.400. The system starts from rest. What is the 

speed of the ball of mass m2 = 5.00 kg when it has 

fallen a distance h = 1.50 m? 

  

Figure 5.10. 

24. A toy cannon uses a spring to project a 5.30-g soft rubber ball. The spring is 

originally compressed by 5.00 cm and has a force constant of 8.00 N/m. When the 

cannon is fired, the ball moves 15.0 cm through the horizontal barrel of the cannon, 

and the barrel exerts a constant friction force of 0.032 N on the ball. (a) With what 
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speed does the projectile leave the barrel of the cannon? (b) At what point does the 

ball have maximum speed? (c) What is this maximum speed? 

25. An electric scooter has a battery capable of supplying 120 Wh of energy. If 

friction forces and other losses account for 60.0% of the energy usage, what altitude 

change can a rider achieve when driving in hilly terrain if the rider and scooter have 

a combined mass of 89 kg? 

26. An older-model car accelerates from 0 to speed v in a time interval of Δt. A 

newer, more powerful sports car accelerates from 0 to 2v in the same time period. 

Assuming the energy coming from the engine appears only as kinetic energy of the 

cars, compare the power of the two cars. 

27. A 3.50-kN piano is lifted by three workers at constant speed to an apartment 25.0 

m above the street using a pulley system fastened to the roof of the building. Each 

worker is able to deliver 165 W of power, and the pulley system is 75.0% efficient 

(so that 25.0% of the mechanical energy is transformed to other forms due to friction 

in the pulley). Neglecting the mass of the pulley, find the time required to lift the 

piano from the street to the apartment. 

28. A 650-kg elevator starts from rest. It moves upward for 3.00 s with constant 

acceleration until it reaches its cruising speed of 1.75 m/s. (a) What is the average 

power of the elevator motor during this time interval? (b) How does this power 

compare with the motor power when the elevator moves at its cruising speed? 

29. A 4.00-kg particle moves along the x axis. Its position varies with time according 

to x = t + 2.0t3, where x is in meters and t is in seconds. Find (a) the kinetic energy 

of the particle at any time t, (b) the acceleration of the particle and the force acting 

on it at time t, (c) the power being delivered to the particle at time t, and (d) the work 

done on the particle in the interval t = 0 to t = 2.00 s. 
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Topic 6. Dynamics of rotational motion. 

 

Example 6.1. Fundamental equation of the dynamics of rotational motion 

A block of mass m1 = 100 g and a block of mass m2 = 200 g are connected by a 

massless string over a pulley in the shape of a solid disk of mass m = 80 g (Figure 6.1). 

Find the acceleration the blocks acquire if left on their own? Friction is negligible. 

Solution: 

 

Figure 6.1. 

To solve the problem we apply the fundamental laws of 

translational and rotational motion.  

Two forces are acting on each of the moving blocks: the 

gravitational force mg , directed downward, and the tension force 

T , directed upward. Since m2 > m1, the acceleration vector a  of 

the first block is directed upwards, while the acceleration vector of 

the second block is directed downwards. 

Let’s write the Newton’s second law for the two blocks: 

1 1 1m g T m a  ;  2 2 2m g T m a  . 

Projections onto the vertical direction are: 

1 1 1m g T m a   ;  
2 2 2m g T m a    . 

Then, the tension forces  

1 1 1T m a m g  ;  
2 2 2T m g m a  . 

According to the fundamental equation of dynamics of rotational motion, 

M = Jβ, 

where M is the net torque exerted on the disk, J is its moment of inertia, β is its angular 

acceleration.  

The magnitude of the net torque acting on the disk about its axis of rotation is  
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M = T’2R – T’1R, 

where T’2 and T’1 are the forces exerted by the string on the rim of the disk. (The 

gravitational force exerted by the Earth on the disk and the normal force exerted by the 

axle on the disk both pass through the axis of rotation and therefore produce no torque.) 

According to Newton's third law, the forces T’2 and T’1 are equal in magnitudes 

to the forces T2 and T1, respectively, but are opposite in directions. When the blocks 

move, the disk rotates clockwise. Consequently,  

M = (T2 – T1)R. 

The moment of inertia of the disk J = mR2/2.  

Because the blocks and disk are connected by a string that does not slip, the 

translational acceleration of the suspended blocks is equal to the tangential acceleration 

of a point on the disk’s rim. Therefore, the angular acceleration β of the disk and the 

translational acceleration of the blocks are related by β = a/R. 

Substituting these expressions into the fundamental law of the dynamics of 

rotational motion, we obtain: 

2

2 1( )
2

mR a
T T R

R
  , 2 1

2

ma
T T  . 

Using the expressions for the tension forces found before, 

2 2 1 1( )
2

ma
m g m a m g m a    ;  2 1 1 2

2

ma
m g m g m a m a    . 

Eventually, 

2 1

1 2

( )

/ 2

m m g
a

m a m a ma




 
. 

Calculations: 

2 2(0.2 0.1)
9.8 / 2.88 /

0.2 0.1 0.04
a m s m s


  

 
. 
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Example 6.2. The law of conservation of the angular momentum 

A platform in the form of a disk of radius R = 1.5 m and mass m1 = 180 kg is 

rotating by inertia about a vertical axis with a frequency υ = 10 min-1. A man of mass 

m2 = 60 kg is standing in the center of the platform. What linear speed relative to the 

ground will the man have if he moves to the edge of the platform? 

Solution: 

According to the law of conservation of the angular momentum, 

'1 2 1 2(J +J ) =(J +J )  ;  ' 1 2

1 2

J + J

J + J
 


, 

where J1 is the moment of inertia of the platform, J2 is the moment of inertia of the man 

standing in the center of the platform, ω is the angular speed of the platform with the 

man standing in its center, J2’ is the moment of inertia of the man standing on the edge 

of the platform, ω’ is the angular speed of the platform with the man standing on the 

edge.  

The moment of inertia of the platform is equal to that of the disk, consequently, 

2

1
1

2

m R
J  . The moment of inertia of the man is equal to that of the material point, 

therefore, J2 = 0, J2’ = m2R
2. The angular speed of the platform before the man moves 

is equal to ω = 2πυ. 

The linear speed of the man standing on the edge of the platform is related to the 

angular speed by the relation v = ω’R. 

Then, after substitution, we find the linear speed of the man: 

2

1 1

2 2

1 2 1 2

2
2 2

2 2

1 2

1 2

J + J m R m
v R R R

J + J m R + m R m + m
    


. 

The calculations: 
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180 10
2 1.5 / 0.942 /

180 2 60 60
v m s m s

+
 


. 

 

Example 6.3. Relative rotation. 

A platform in the form of a disk can rotate about a vertical axis. A man of mass 

m1 = 60 kg is standing at the edge of the platform. By what angle does the platform 

turn about the axis if the man walks along the edge of the platform and, bypassing it, 

returns to the initial point on the platform? The mass of the platform is m2 =240 kg. 

The moment of inertia J of the man is considered as for a material point. 

Solution: 

Before the man starts walking, the man-platform system is at rest and its total 

angular momentum is zero. Then the walking man supplies an angular momentum to 

the platform and it starts rotating. According to the law of conservation of the angular 

momentum of the system, 

1 2 20 1= J + J  , 

where J1 is the moment of inertia of the man at the edge of the platform, for the material 

point 2

1 1J m R ; 

J2 is the moment of inertia of platform, for the disk 
2

2
2

2

m R
J  ; 

ω1 is the angular speed of the man relative to the ground; 

ω2 is the angular speed of the platform relative to the ground. 

Let’s find how the angular speeds of the platform and the man are related. 

Consider motion of the man relative to the reference frame associated with the 

platform. In that frame he passes complete circle along the edge of the platform. That 

is, he turns by the angle 2π relative to the platform. We can find the angular speed of 

the man in the “platform” reference frame as  
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2
'

t t

 



 
 

, 

where t  is the time of his motion. 

As follows from the Galilean velocity addition law,  

1 2

2

t


  


, 

where ω1 is the man’s angular speed relative to the ground, ω2 is the angular speed of 

the “platform” frame relative to the ground, 
2

t




 is the man's angular speed relative to 

the moving “platform” frame; the negative sign indicates that the angular velocities of 

the man and the platform have opposite direction. 

After substitution we obtain: 

2
2 2

1 2 2

2
0

2

m R
m R

t


 
 

   
 

, 

and the angular speed of the platform is 

 2

1

2 2 2

1 2

2

/ 2

m R t

m R m R








 

The time of the platform's motion is equal to the time of the man's motion along 

the edge, so the angular speed of the platform may be found as 2
2

t








. 

Consequently, the platform rotates by the angle  

2

1 1
2 2

1 2 1 2

2 2

( / 2) ( / 2)

m R m

R m m m m

 
  

 
. 

Calculations: 

2

2 60
2.1

(60 240/ 2)





  


(rad) 
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Example 6.4. Rolling motion. 

A solid sphere of radius R and mass m is rolling without slipping after being 

released from rest at the top of the incline of angle θ and length l. Find the translational 

speed of the center of mass at the bottom of the incline and the magnitude of the 

translational acceleration of the center of mass. 

Solution: 

 

Figure 6.2. 

Accelerated rolling motion is possible only if a 

friction force is present between the sphere and the 

incline to produce a net torque about the center of 

mass. Despite the presence of friction, no loss of 

mechanical energy occurs because the contact 

point is at rest relative to the surface at any instant. 

(On the other hand, if the sphere were to slip, mechanical energy of the sphere–incline–

Earth system would decrease due to the nonconservative force of kinetic friction.) 

Then, the law of conservation of the total mechanical energy can be used. For 

the sphere–Earth system, we define the zero configuration of gravitational potential 

energy to be when the sphere is at the bottom of the incline. Then at the top of the 

incline (see Figure 6.2) 

U = mgh = mglsinθ. 

At the bottom, the gravitational potential energy is transformed into the kinetic 

energy of the rolling motion 

22

2 2

C CI mv
K


  , 

where IC is the moment of inertia of the sphere about the axis through its center of 

mass; 
22

5
C

mR
I  ; 

ω is the angular speed of rotation; 
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vC is the translational speed of the center of mass of the sphere. 

Therefore, conservation of mechanical energy gives 

22

sin
2 2

C CI mv
mgl


   . 

Using the relation Cv R , we obtain 

2 2

2
sin

2 2

C C CI v mv
mgl

R
   ; 

2

sin

/ 2 / 2
C

C

mgl
v

I R m





. 

Substituting the value for IC we obtain 

sin 10
sin

/5 / 2 7
C

mgl
v gl

m m


 


. 

To calculate the translational acceleration of the center of mass, notice that it 

passes the distance l along the incline at constant acceleration. For an object starting 

from rest and moving through a distance l under constant acceleration: 

2 2

2 2

at v
l

a
  , 

and 

2 1 10 5
sin sin

2 2 7 7

v
a gl g

l l
     . 

We have found 
10

sin
7

Cv gl   and 
5

sin
7

a g  . 
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Problems 

1. A rotating wheel requires 3.00 s to rotate through 37.0 revolutions. Its angular speed 

at the end of the 3.00-s interval is 98.0 rad/s. What is the constant angular 

acceleration of the wheel? 

2. A wheel starts from rest and rotates with constant angular acceleration to reach an 

angular speed of 12.0 rad/s in 3.00 s. Find (a) the magnitude of the angular 

acceleration of the wheel and (b) the angle in radians through which it rotates in this 

time interval. 

3. A centrifuge in a medical laboratory rotates at an angular speed of 3 600 rev/min. 

When switched off, it rotates through 50.0 revolutions before coming to rest. Find 

the constant angular acceleration of the centrifuge. 

4. During a certain time interval, the angular position of a swinging door is described 

by θ = 5.00 + 10.0t + 2.00t2, where uis in radians and tis in seconds. Determine the 

angular position, angular speed, and angular acceleration of the door (a) at t = 0 and 

(b) at t = 3.00 s. 

5. A bar on a hinge starts from rest and rotates with an angular acceleration β = 10 + 

6t, where β is in rad/s2 and t is in seconds. Determine the angle in radians through 

which the bar turns in the first 4.00 s. 

6. A disk 8.00 cm in radius rotates at a constant rate of 1200 rev/min about its central 

axis. Determine (a) its angular speed in radians per second, (b) the tangential speed 

at a point 3.00 cm from its center, (c) the radial acceleration of a point on the rim, 

and (d) the total distance a point on the rim moves in 2.00 s. 

7. The four particles in Figure 6.3 are connected by 

rigid rods of negligible mass. The origin is at the 

center of the rectangle. The system rotates in the xy 

plane about the z axis with an angular speed of 6.00 

rad/s. Calculate (a) the moment of inertia of the 

system about the z axis and (b) the rotational kinetic 

energy of the system.  

Figure 6.3. 
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8. A uniform, thin, solid door has height 2.20 m, width 0.870 m, and mass 23.0 kg. (a) 

Find its moment of inertia for rotation on its hinges. (b) Is any piece of data 

unnecessary? 

9. In Figure 6.4, the cam is a circular disk 

of radius R with a hole of diameter R cut 

through it. As shown in the figure, the 

hole does not pass through the center of 

the disk. 
 

Figure 6.4. 

 

10. The cam with the hole cut out has mass M. The cam is mounted on a uniform, 

solid, cylindrical shaft of diameter R and also of mass M. What is the kinetic energy 

of the cam–shaft combination when it is rotating with angular speed ω about the 

shaft’s axis?  

11. Find the net torque on the wheel in Figure 6.5 

about the axle through O, taking a = 10.0 cm and 

b = 25.0 cm. 

 

 

Figure 6.5. 

12. A grinding wheel is in the form of a uniform solid disk of radius 7.00 cm and 

mass 2.00 kg. It starts from rest and accelerates uniformly under the action of the 

constant torque of 0.600 N ?m that the motor exerts on the wheel. (a) How long does 

the wheel take to reach its final operating speed of 1 200 rev/min? (b) Through how 

many revolutions does it turn while accelerating? 
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13. A block of mass m1 = 2.00 kg and a block of 

mass m2 = 6.00 kg are connected by a massless 

string over a pulley in the shape of a solid disk 

having radius R = 0.250 m and mass M = 10.0 

kg. The fixed, wedge-shaped ramp makes an 

angle of θ = 30.00 as shown in Figure 6.6.  

Figure 6.6. 

The coefficient of kinetic friction is 0.360 for both blocks. (a) Draw force diagrams 

of both blocks and of the pulley. Determine (b) the acceleration of the two blocks 

and (c) the tensions in the string on both sides of the pulley. 

14. A potter’s wheel—a thick stone disk of radius 0.500 m and mass 100 kg—is 

freely rotating at 50.0 rev/min. The potter can stop the wheel in 6.00 s by pressing a 

wet rag against the rim and exerting a radially inward force of 70.0 N. Find the 

effective coefficient of kinetic friction between wheel and rag. 

15. Consider the system shown in Figure 6.7 with m1 = 20.0 kg, 

m2 = 12.5 kg, R = 0.200 m, and the mass of the pulley M = 5.00 

kg. Object m2 is resting on the floor, and object m1 is 4.00 m 

above the floor when it is released from rest. The pulley axis is 

frictionless. The cord is light, does not stretch, and does not slip 

on the pulley. (a) Calculate the time interval required for m1 to 

hit the floor. (b) How would your answer change if the pulley 

were massless? 

 
 

Figure 6.7. 

16. A horizontal 800-N merry-go-round is a solid disk of radius 1.50 m and is started 

from rest by a constant horizontal force of 50.0 N applied tangentially to the edge of 

the disk. Find the kinetic energy of the disk after 3.00 s. 
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17. In Figure 6.8, the hanging object has a mass of 

m1 = 0.420 kg; the sliding block has a mass of m2 

= 0.850 kg; and the pulley is a hollow cylinder 

with a mass of M = 0.350 kg, an inner radius of R1 

= 0.020 0 m, and an outer radius of R2 = 0.030 0 

m. Assume the mass of the spokes is negligible.  

Figure 6.8. 

The coefficient of kinetic friction between the block and the horizontal surface is μ 

= 0.250. The pulley turns without friction on its axle. The light cord does not stretch 

and does not slip on the pulley. The block has a velocity of vi = 0.820 m/s toward 

the pulley when it passes a reference point on the table. (a) Find the acceleration of 

the block. (b) Use energy methods to predict its speed after it has moved to a second 

point, 0.700 m away. 

18. An object with a mass of m = 5.10 kg is attached to the 

free end of a light string wrapped around a reel of radius R 

= 0.250 m and mass M = 3.00 kg. The reel is a solid disk, 

free to rotate in a vertical plane about the horizontal axis 

passing through its center as shown in Figure 6.9. The 

suspended object is released from rest 6.00 m above the 

floor. Determine (a) the tension in the string, (b) the 

acceleration of the object, and (c) the speed with which the 

object hits the floor. (d) Verify your answer to part (c) by 

using the isolated system (energy) model. 

 

Figure 6.9. 

 

19. A uniform solid disk of radius R and mass M is free to rotate 

on a frictionless pivot through a point on its rim (Fig. 6.10). If 

the disk is released from rest in the position shown by the 

copper-colored circle, (a) what is the speed of its center of mass 

when the disk reaches the position indicated by the dashed   

Figure 6.10. 



69 
 

circle? (b) What is the speed of the lowest point on the disk in the dashed position? 

20. A cylinder of mass 10.0 kg rolls without slipping on a horizontal surface. At a 

certain instant, its center of mass has a speed of 10.0 m/s. Determine (a) the 

translational kinetic energy of its center of mass, (b) the rotational kinetic energy 

about its center of mass, and (c) its total energy. 

21. Determine the acceleration of the center of mass of a uniform solid disk rolling 

down an incline making angle θ with the horizontal. Compare the found acceleration 

with that of a uniform hoop. 

22. A uniform solid disk and a uniform hoop are placed side by side at the top of an 

incline of height h. (a) If they are released from rest and roll without slipping, which 

object reaches the bottom first? (b) Verify your answer by calculating their speeds 

when they reach the bottom in terms of h. 

23. A clown balances a small spherical grape at the top of his bald head, which also 

has the shape of a sphere. After drawing sufficient applause, the grape starts from 

rest and rolls down without slipping. It will leave contact with the clown’s scalp 

when the radial line joining it to the center of curvature makes what angle with the 

vertical? 

24. A conical pendulum consists of a bob of mass m in motion 

in a circular path in a horizontal plane as shown in Figure 6.11. 

During the motion, the supporting wire of length ,maintains a 

constant angle θ with the vertical. Find the magnitude of the 

angular momentum of the bob about the vertical dashed line. 

 
 

Figure 6.11. 

25. A uniform solid disk of mass m = 3.00 kg and radius r = 0.200 m rotates about a 

fixed axis perpendicular to its face with angular frequency 6.00 rad/s. Calculate the 

magnitude of the angular momentum of the disk when the axis of rotation (a) passes 

through its center of mass and (b) passes through a point midway between the center 

and the rim. 

 



70 
 

26. A playground merry-go-round of radius R = 2.00 m has a moment of inertia I = 

250 kg∙m2 and is rotating at 10.0 rev/min about a frictionless, vertical axle. Facing 

the axle, a 25.0-kg child hops onto the merry-go-round and manages to sit down on 

the edge. What is the new angular speed of the merry-go-round? 

27. A student sits on a freely rotating stool 

holding two dumbbells, each of mass 3.00 kg 

(Fig. 6.12). When his arms are extended 

horizontally (Fig. 6.12a), the dumbbells are 1.00 

m from the axis of rotation and the student 

rotates with an angular speed of 0.750 rad/s. The 

moment of inertia of the student plus stool is 3.00 

kg∙m2 and is assumed to be constant. 

 

                    (a)                    (b) 

Figure 6.12. 

The student pulls the dumbbells inward horizontally to a position 0.300 m from the 

rotation axis (Fig. 6.12b). (a) Find the new angular speed of the student. (b) Find the 

kinetic energy of the rotating system before and after he pulls the dumbbells inward. 

28. A wooden block of mass M resting on 

a frictionless, horizontal surface is 

attached to a rigid rod of length l, and of 

negligible mass (Fig. 6.13). The rod is 

pivoted at the other end. A bullet of mass 

m traveling parallel to the horizontal 

surface and perpendicular to the rod with 

speed v hits the block and becomes 

embedded in it. 

 

Figure 6.13. 

(a) What is the angular momentum of the bullet–block system about a vertical axis 

through the pivot? (b) What fraction of the original kinetic energy of the bullet is 

converted into internal energy in the system during the collision? 
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29. A 0.005 00-kg bullet traveling horizontally with 

speed 103 m/s strikes an 18.0-kg door, imbedding 

itself 10.0 cm from the side opposite the hinges as 

shown in Figure 6.14. The 1.00-m wide door is free 

to swing on its frictionless hinges. At what angular 

speed does the door swing open immediately after 

the collision? 

  

Figure 6.14. 
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MOLECULAR PHYSICS AND THERMODYNAMICS 

 

Topic 7. Kinetic theory of gases. 

 

Example 7.1. Microscopic characteristics of the ideal gas 

Find the average kinetic energy per one molecule of ammonia NH3 at a 

temperature of t = 27°C and the average energy of rotational motion of this molecule 

at the same temperature. 

Solution: 

The average total kinetic energy per molecule is  

2
B

i
E k T , 

where i is the number of degrees of freedom of the molecule; Bk  is the Boltzmann 

constant; T is the thermodynamic temperature of the gas: T = t0 + T0, where T0 = 273 K. 

The number of degrees of freedom i for a four-atomic ammonia molecule equals 6. 

Substituting numerical values, we obtain: 

23 206
1.38 10 (27 273) 1.242 10

2
E        (J). 

The average energy of rotational motion per molecule is determined by the 

formula 

3

2
rot B

i
E k T


 , 

where the subtracted number 3 means the number of translational degrees of freedom 

per molecule. 

Substituting numerical values: 
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23 216 3
1.38 10 (27 273) 6.21 10

2
rotE  
      (J). 

  

Example 7.2. Microscopic characteristics of the ideal gas 

The mean free path <l> of a carbon dioxide molecule under standard conditions 

is 40 nm. Determine the average arithmetic speed avgv  of the molecules and the number 

of collisions z experienced by the molecule in 1 second. 

Solution: 

 The average arithmetic speed of the molecules is given by the formula 

8
avg

RT
v

M
  , 

here M is the molar mass of the substance. 

Substituting the numerical values, we obtain 

avgv  = 362 m/s. 

The mean free path is given by the relation  

v t
l

z t

 
 

 
, 

then the mean number of collisions in unit time is  

avgv
z

l
 

 
,  

and substituting the numerical values avgv  = 362 m/s, <l> = 40 nm = 4∙10-8 m, we obtain 

<z> = 9.05∙109 s-1. 
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Example 7.3. The Boltzmann distribution law 

Dust particles of mass m = 10-18 g are suspended in the air. Determine the 

thickness of the air layer, within which there is no more than 1% difference in 

concentration of the dust particles. The temperature T of the air within the entire 

volume is the same and equals to 300 K. 

Solution: 

In the state of thermodynamic equilibrium, concentration of the dust particles 

depends only on the z coordinate along the vertical axis. In that case, the concentration 

can be found from the Boltzmann distribution law: 

( )

(0) B

U z

k T
n n e



 ,   

where U(z) is the potential energy. In the homogeneous gravitational field U = mgz, 

then 

(0) B

mgz

k T
n n e



 . 

According to the formulation of the problem, the change in concentration Δn 

with height is small comparing to n (Δn/n = 0.01). Therefore, without a significant 

error, we can consider the change in concentration Δn as the differential dn. 

Differentiating the expression for n with respect to z, we obtain 

(0) B

mgz

k T

B B

mg mg
dn n e dz ndz

k T k T



    . 

Then, the change in the coordinate 

Bk T dn
dz

mg n
   

The negative sign indicates that the positive change in the coordinate (dz > 0) 

corresponds to the decrease in the relative concentration (dn < 0). We omit the negative 
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sign (in this case it is not essential) and replace the differentials dz and dn by the finite 

increments Δz and Δn: 

Bk T n
z

mg n


  . 

By substituting the values Δn/n = 0.01, Bk  = 1.38∙10-23 J/K, T = 300 K,  

m = 10-21 kg, g = 9.81 m/s2 and making calculations, we obtain 

Δz = 4.23 mm. 

As can be seen from the obtained result, concentration of even such small dust 

particles (m = 10-18 g) changes very rapidly with height. 

 

Example 7.4. Barometric formula 

A barometer in a cockpit of a flying airplane always shows the same pressure  

p = 79 kPa, so a pilot considers an altitude h of the flight to be unchanged. However, 

the air temperature outside the plane changes from t0 = 5 °C to t0 = 1 °C. What error 

Δh in the definition of altitude is made by the pilot? The pressure p0 at the Earth's 

surface is assumed to be standard. 

Solution: 

Consider the barometric formula 

0

Mg
h

RTp p e


 , 

where M is the molar mass of the air. The barometer can show unchanging pressure p 

at different temperatures T1 and T2 only if the airplane is not at the same altitude h 

(which is considered unchanged by the pilot), but at some other altitude h2. 

Let us use the barometric formula for these two cases: 

1
1

0

Mg
h

RT
p p e



  ; . 
2

2

0

Mg
h

RT
p p e



  
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We can express the altitudes h1 and h2: 

1 0
1 ln

RT p
h

Mg p

 
  

 
;  2 0

2 ln
RT p

h
Mg p

 
  

 
. 

Now the difference Δh: 

 
 0

2 1 2 1

ln /R p p
h h h T T

Mg
      .  

Substituting the numerical values: 

 
 

 3

8.31 ln 101/79
1 5 28.5

29 10 9.8
h




    

 
(m) 

The negative sign means that h2 < h1 and, consequently, that the airplane has 

descended by 28.5 m comparing to the assumed altitude. 

 

Example 7.5. The equation of state for an ideal gas 

A 10-L cylinder contains helium at a pressure of p1 = l MPa at a temperature of 

T1 = 300 K. After 10 g of helium is used from the balloon, the temperature in the 

cylinder droppes to T2 = 290 K. Determine the pressure p2 of the remaining helium in 

the cylinder. 

Solution: 

To solve the problem, we use the equation of state for an ideal gas. For the initial 

state:  

1
1 1

m
pV RT

M
 ,  

and for the final state: 

2
2 2

m
p V RT

M
 , 
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where m1 and m2 are the masses of helium in the initial and final states. Solving for m1 

and m2: 

1
1

1

pVM
m

RT
 ; 2

2

2

p VM
m

RT
 . 

Then 

1 2

1 2

VM p p
m

R T T

 
   

 
, 

and the pressure in the final state: 

1 2 2
2

1

p T mRT
p

T MV


   . 

According to the Mendeleev’s periodic table of elements, the molar mass of 

helium is M = 4∙10-3 kg/mol. Substituting the numerical values, we obtain 

6 3
5

2 3 3

1

10 290 10 10 8.31 290
3.64 10

300 4 10 10 10
p



 

   
   

  
(Pa) 

 

Problems 

1. A cylinder contains a mixture of helium and argon gas in equilibrium at 1500C. (a) 

What is the average kinetic energy for each type of gas molecule? (b) What is the 

rms speed of each type of molecule? 

2. A 2.00-mol sample of oxygen gas is confined to a 5.00-L vessel at a pressure of 8.00 

atm. Find the average translational kinetic energy of the oxygen molecules under 

these conditions. 

3. Oxygen, modeled as an ideal gas, is in a container and has a temperature of 77.00C. 

What is the rms-average magnitude of the momentum of the gas molecules in the 

container? 

4. In a period of 1.00 s, 5.00∙1023 nitrogen molecules strike a wall with an area of 8.00 

cm2. Assume the molecules move with a speed of 300 m/s and strike the wall head-
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on in elastic collisions. What is the pressure exerted on the wall? Note: the mass of 

one N2 molecule is 4.65∙10-26 kg. 

5. In a 30.0-s interval, 500 hailstones strike a glass window of area 0.600 m2 at an angle 

of 45.00 to the window surface. Each hailstone has a mass of 5.00 g and a speed of 

8.00 m/s. Assuming the collisions are elastic, find (a) the average force and (b) the 

average pressure on the window during this interval. 

6. If the diameter of an oxygen molecule is 2.00∙10-10 m, find the mean free path of the 

molecules in a scuba tank that has a volume of 12.0 L and is filled with oxygen at a 

gauge pressure of 100 atm at a temperature of 25.00C. What is the average time 

interval between molecular collisions for a molecule of this gas? 

7. Gas is confined in a tank at a pressure of 11.0 atm and a temperature of 25.00C. If 

two-thirds of the gas is withdrawn and the temperature is raised to 75.00C, what is 

the pressure of the gas remaining in the tank? 

8. A rigid tank contains 1.50 moles of an ideal gas. Determine the number of moles of 

gas that must be withdrawn from the tank to lower the pressure of the gas from 25.0 

atm to 5.00 atm. Assume the volume of the tank and the temperature of the gas 

remain constant during this operation. 

9. Gas is contained in an 8.00-L vessel at a temperature of 20.00C and a pressure of 

9.00 atm. (a) Determine the number of moles of gas in the vessel. (b) How many 

molecules are in the vessel? 

10. An auditorium has dimensions 10.0 m × 320.0 m × 330.0 m. How many 

molecules of air fill the auditorium at 20.00C and a pressure of 101 kPa (1.00 atm)? 

11. An automobile tire is inflated with air originally at 10.00C and normal 

atmospheric pressure. During the process, the air is compressed to 28.0% of its 

original volume and the temperature is increased to 40.00C. (a) What is the tire 

pressure? (b) After the car is driven at high speed, the tire’s air temperature rises to 

85.00C and the tire’s interior volume increases by 2.00%. What is the new tire 

pressure (absolute)? 

12. The mass of a hot-air balloon and its cargo (not including the air inside) is 200 

kg. The air outside is at 10.00C and 101 kPa. The volume of the balloon is 400 m3. 
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To what temperature must the air in the balloon be warmed before the balloon will 

lift off? (Air density at 10.00C is 1.244 kg/m3.) 

13. At 25.0 m below the surface of the sea, where the temperature is 5.000C, a diver 

exhales an air bubble having a volume of 1.00 cm3. If the surface temperature of the 

sea is 20.00C, what is the volume of the bubble just before it breaks the surface? 

14. A bicycle tire is inflated to a gauge pressure of 2.50 atm when the temperature 

is 15.00C. While a man rides the bicycle, the temperature of the tire rises to 45.00C. 

Assuming the volume of the tire does not change, find the gauge pressure in the tire 

at the higher temperature. 
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Topic 8. The first law of thermodynamics. 

 

Example 8.1. Heat. Internal energy. Work. 

What amount of energy by heat is absorbed by the hydrogen of mass m = 0.2 kg 

when it is heated from the temperature t0
1 = 0 °C to the temperature t0

2 = 100 °C at 

constant pressure? Find also the change in the internal energy of the gas and the work 

done by the gas. 

Solution: 

The heat Q absorbed by the gas in isobaric process can determined by the 

formula 

pQ C T  ,  

where 
m

M
   is the amount of substance, 

2

2
p

i
C R


  is molar heat capacity at 

constant pressure; ΔT is the change in the gas temperature. So,  

2

2

m i
Q R T

M


  . 

Substituting the numerical values, we obtain 

3

0.2 5 2
8.31 100 291

2 10 2
Q




   


(kJ). 

The change in the internal energy is expressed by the formula 

2

m i
U R T

M
   , 

then  

3

0.2 5
8.31 100 208

2 10 2
U


    


(kJ). 
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The work done by the expanding gas can be expressed from the first law of 

thermodynamics:  

_by gasQ U A   ,  

and 

_by gasA Q U   . 

Substituting the numerical values of Q and ΔU, we find 

A = 83 kJ. 

 

Example 8.2. Heat capacity at constant pressure and at constant volume 

Nitrogen is heated at constant pressure and Q = 21 kJ of energy is supplied to 

the gas by heat. Find the work done by the gas and the change in its internal energy. 

Solution: 

According to the first law of thermodynamics,  

_by gasQ U A   ,  

where ΔU is the change in the internal energy and _by gasA  is the work done by the 

expanding gas. 

The heat Q absorbed by the gas in isobaric equals 

pQ C T  ,  

where   is the amount of substance, 
2

2
p

i
C R


  is molar heat capacity at constant 

pressure; ΔT is the change in the gas temperature. 

The change in the internal energy by definition can be found as  

2
V

i
U R T C T      , 
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where   is the amount of substance, 
2

V

i
C R  is molar heat capacity at constant 

volume; ΔT is the change in the gas temperature. 

By taking ratio of the two last expressions, we can find that 

2

V

p

U C i

Q C i


 


. 

Then, the change in the internal energy equals 

2

i
U Q

i
 


. 

Substituting the numerical values, we find 

3 35
21 10 15 10

7
U       (J) 

From the first law of thermodynamics, the work done by the gas is 

_

2

2 2
by gas

i
A Q U Q Q Q

i i
     

 
. 

Substituting the numerical values, we find 

3 32
21 10 6 10

7
A       (J) 

 

Example 8.3. Heat capacity at a quasi-static process 

An ideal gas, whose molar heat capacity at constant volume VC  is known, is 

taken through a quasi-static process described by 1) 0

VT T e ; 2) 0

Vp p e , where T0, 

p0, α are constants. Find the molar heat capacity of the gas as the function of its volume. 

Solution: 

According to the first law of thermodynamics,  

Q dU A   ,  
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where dU is the change in the internal energy and A  is the work done by the 

expanding gas. 

By substituting the expressions for heat Q CdT  , internal energy 

2
V

i
dU RdT C dT    and work A pdV  into the first law of thermodynamics, we 

obtain  

VCdT C dT pdV   ; 

V

pdV
C C

dT
  . 

1. As 0

VT T e , we can find the derivative 0

VdT
T e

dV

 . Then,  

0

1 1
V

dV

dT T e T 
  , and 

V

p
C C

T
  . 

According to the equation of state for an ideal gas, pV RT ;  
RT

p
V


 , and 

V

RT
C C

TV




  . So, 

V

R
C C

V
  . 

2. As 0

Vp p e , then according to the equation of state for an ideal gas, 

0

V

RT RT
V

p p e
 

  , or 
0

V R
Ve T

p

 
 . We can differentiate the both sides of this 

expression: 

 
0

V R
d Ve d T

p

  
  

 
; 
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 
0

V V R
e V e dV dT

p

  
  ; 

 0
(1 )V V

dV R R

dT p Vp e V e 

 


 


. 

By substituting this expression into the equation for the molar heat capacity, we 

obtain 
(1 )

V

p R
C C

p V



 
  


, and 

1
V

R
C C

V
 


. 

 

Example 8.4. Thermodynamic processes 

Oxygen occupies a volume of V1 = 1 m3 and is under a pressure of p1 = 200 kPa. 

The gas was first heated at a constant pressure to a volume of V2 = 3 m3, and then at 

constant volume up to a pressure of p2 = 500 kPa. Build the PV-diagram of the process 

and find: 1) the change in the internal energy of the gas; 2) the work done by the gas; 

3) the amount of energy by heat transferred to the gas. 

Solution: 

          Рис. 11.1
 

Figure 8.1. 

Let’s build the PV-diagram of the process (Figure 

8.1). On the diagram the points 1, 2, 3 indicate the gas 

states characterized by the parameters (p1, V1, T1),  

(p1, V2, T2), (p2, V2, T3). 

  

1. The change in the internal energy of the gas during its transition from the state 

1 to the state 3 is expressed by the formula 

 3 1
2 2

m i m i
U R T R T T

M M
     ,  
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where M is the molar mass of the oxygen. The temperatures T1 and T3 can be found 

from the equation of state for the ideal gas: 

1 1
1

MpV
T

mR
 ;  2 2

3

Mp V
T

mR
  

Taking this into account,  

 2 2 1 1
2

i
U p V pV    

Substituting the numerical values (considering that oxygen is a diatomic gas and 

i = 5) we obtain: 

ΔU = 3.25 MJ. 

2. The total work done by the gas is equal to  

A = A1 + A2,  

where A1 is work done during the process 1-2; A2 is work done during the process 2-3. 

As we know, the work done by the gas is  

A pdV  . 

The process 1-2 occurs at constant pressure (p = const). In that case the work is 

expressed by the formula  

A1 = p1ΔV = p1(V2 – V1).  

The process 2-3 occurs at constant volume. That is the volume of the gas does 

not change, dV = 0, and, therefore, the work done by the gas is zero (A2 = 0). So, 

A = A1 = p1(V2 – V1).   

Substituting the numerical values we obtain: 

A = 0.4 MJ 
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3. According to the first law of thermodynamics, the amount of energy 

transferred to the gas by heat Q is equal to the sum of the work A done by the gas and 

the change in the gas internal energy ΔU: 

Q = A + ΔU, or Q = 3.65 MJ. 

 

Example 8.5. Thermodynamic processes 

Find the equation of a thermodynamic process (in variables T, V) if the molar 

heat capacity of a gas is changing according to the law VC C T  , where α is a 

constant. 

Solution: 

According to the first law of thermodynamics,  

Q dU A   ,  

where Q CdT   is the elementary amount of heat, VdU C dT  is the change in the 

internal energy and A pdV   is the elementary amount of work done by the 

expanding gas. 

Then, we obtain the expression for the molar heat capacity 

V

pdV
C C

dT
  . 

Comparing it with the expression given in the formulation of the problem, we 

see that 

pdV
T

dT



 . 

According to the equation of state for an ideal gas, 
RT

p
V


 , and we obtain 

RTdV
T

VdT
 ; 

RdV

VdT
 ; 

dV
dT

V R


 . 
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Now we can take integral of the both sides of this expression and obtain  

0

ln
V

T
V R


 , 

where 0V  is the initial volume occupied by the gas. Then, 

0

T
RV V e


 . 

 

Problems 

1. What mass of water at 25.0°C must be allowed to come to thermal equilibrium with 

a 1.85-kg cube of aluminum initially at 150°C to lower the temperature of the 

aluminum to 65.0°C? Assume any water turned to steam subsequently condenses. 

2. How long would it take a 1 000 W heater to melt 1.00 kg of ice at -20.0°C, assuming 

all the energy from the heater is absorbed by the ice? 

3. A 3.00-g copper coin at 25.0°C drops 50.0 m to the ground. (a) Assuming 60.0% of 

the change in gravitational potential energy of the coin– Earth system goes into 

increasing the internal energy of the coin, determine the coin’s final temperature. 

4. How much energy is required to change a 40.0-g ice cube from ice at -10.0°C to 

steam at 110°C? 

5. A 3.00-g lead bullet at 30.0°C is fired at a speed of 240 m/s into a large block of ice 

at 0°C, in which it becomes embedded. What quantity of ice melts?  

6. In an insulated vessel, 250 g of ice at 0°C is added to 600 g of water at 18.0°C. (a) 

What is the final temperature of the system? (b) How much ice remains when the 

system reaches equilibrium? 

7. An ideal gas is enclosed in a cylinder with a movable piston on top of it. The piston 

has a mass of 8000 g and an area of 5.00 cm2 and is free to slide up and down, 

keeping the pressure of the gas constant. How much work is done on the gas as the 

temperature of 0.200 mol of the gas is raised from 20.0°C to 300°C? 
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8. An ideal gas is taken through a quasi-static process described by p = αV2, with  

α = 5.00 atm/m6. The gas is expanded to twice its original volume of 1.00 m3. How 

much work is done on the expanding gas in this process? 

9. An ideal gas initially at 300 K undergoes an isobaric expansion at 2.50 kPa. If the 

volume increases from 1.00 m3 to 3.00 m3 and 12.5 kJ is transferred to the gas by 

heat, what are (a) the change in its internal energy and (b) its final temperature? 

10. One mole of an ideal gas does 3 000 J of work on its surroundings as it expands 

isothermally to a final pressure of 1.00 atm and volume of 25.0 L. Determine (a) the 

initial volume and (b) the temperature of the gas. 

11. A sample of a diatomic ideal gas has pressure p and volume V. When the gas is 

warmed, its pressure triples and its volume doubles. This warming process includes 

two steps, the first at constant pressure and the second at constant volume. Determine 

the amount of energy transferred to the gas by heat. 

12. In a (a) constant-volume process and (b) constant-pressure process, 209 J of 

energy is transferred by heat to 1.00 mol of an ideal monatomic gas initially at 300 

K. Find the work done on the gas, the increase in internal energy of the gas, and its 

final temperature. 

13. During the compression stroke of a certain gasoline engine, the pressure 

increases from 1.00 atm to 20.0 atm. If the process is adiabatic and the air–fuel 

mixture behaves as a diatomic ideal gas, (a) by what factor does the volume change 

and (b) by what factor does the temperature change? Assuming the compression 

starts with 0.016 0 mol of gas at 27.00C, find the values of (c) Q, (d) ΔUint, and (e) 

A that characterize the process. 

14. Air in a thundercloud expands as it rises. If its initial temperature is 300 K and 

no energy is lost by thermal conduction on expansion, what is its temperature when 

the initial volume has doubled? 

15. How much work is required to compress 5.00 mol of air at 20.00C and 1.00 atm 

to one-tenth of the original volume (a) by an isothermal process? (b) How much 

work is required to produce the same compression in an adiabatic process? (c) What 

is the final pressure in part (a)? (d) What is the final pressure in part (b)? 
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16. As a 1.00-mol sample of a monatomic ideal gas expands adiabatically, the work 

done on it is 22.50∙103 J. The initial temperature and pressure of the gas are 500 K 

and 3.60 atm. Calculate (a) the final temperature and (b) the final pressure. 

17. A sample of a monatomic ideal gas occupies 5.00 L at atmospheric pressure and 

300 K (point A in Figure 8.2). It is warmed at constant volume to 3.00 atm (point 

B). Then it is allowed to expand isothermally to 1.00 atm (point C) and at last 

compressed isobarically to its original state. (a) Find the number of moles in the 

sample. Find (b) the temperature at point B, (c) the temperature at point C, and (d) 

the volume at point C. (e) Now consider the processes A → B, B → C, and C → A. 

Find Q, A, and ΔUint for each of the processes. (g) For the whole cycle A → B → C 

→ A, find Q, A, and ΔUint. 

 

Figure 8.2. 
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Topic 9. Thermodynamic cycles. The second law of thermodynamics. 

 

Example 9.1. Thermal efficiency of the cycle 

An ideal two-atomic gas containing the amount of substance υ = 1 mol is under 

a pressure of p1 = 250 kPa and occupies a volume of V1 = 10 liters. First, the gas is 

isochorically heated to a temperature of T2 = 400 K. Then it is isothermally expanded 

back to the initial pressure. After that the gas is returned to the initial state by isobaric 

compression. Determine the thermal efficiency of the cycle. 

Solution: 

Рис. 11.2
 

Figure 9.1. 

 

First, build the pV-diagram of the 

thermodynamic cycle. It consists of an isochore, an 

isotherm, and an isobar (see Figure 9.1, the 

characteristic points of the cycle are denoted by  

1, 2, 3).  

The thermal efficiency of any cycle is 

determined by the expression 

1 2 2

1 1

1
Q Q Q

Q Q



   , 

where Q1 is the energy absorbed by heat from a hot source; Q2 is the energy expelled 

by heat to a lower-temperature sink during the cycle. The difference Q1 – Q2 is the 

useful work A, performed by the gas per cycle. This work on the pV-diagram (Figure 

9.1) is represented by the area of the cycle (shaded). 

The working substance (gas) absorbs the energy by heat at two stages: Q1-2 at the 

stage 1-2 (isochoric process) and Q2-3 at the stage 2-3 (isothermal process). Then, 

Q1 = Q1-2 + Q2-3. 

The energy absorbed by the gas by heat in the isochoric process is 

 1 2 2 1vQ C T T   , 
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where Cv is the molar heat capacity of the gas at constant volume; υ is the amount of 

substance. We find the temperature T1 of the initial state using the equation of state for 

the ideal gas: 

1 1
1

pV
T

R
 . 

Substituting the numerical values, we obtain 

3 3

1

250 10 10
300

1 8.31
T

 
 


(K). 

According to the first law of thermodynamics, the energy absorbed by the gas 

by heat in the isothermal process is equal to the work performed by the gas: 

2
2 3 2 3 2

1

ln
V

Q A RT
V

   , 

where V2 is the volume occupied by the gas at the temperature T2 and pressure p1 (point 

3 on the pV-diagram). 

At the stage 3-1 (isobaric process), the gas expells energy by heat Q2 to a cold 

sink, 

 2 3 1 2 1pQ Q C T T   , 

where Cp is the molar heat capacity at constant pressure. 

Substituting the obtained expressions for Q1 and Q2 we can find the thermal 

efficiency of the cycle: 

 

 

2 1

2
2 1 2

1

1

ln

p

v

C T T

V
C T T RT

V




 


 

 

. 

According to the Gay-Lussac law, for the points 1 and 2 laying on the same 

isobar on the pV-diagram 2 2

1 1

V T

V T
 . The molar heat capacities can be expressed in terms 
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of the number of degrees of freedom of the molecule (
2

V

i
C R ;

2

2
P

i
C R


 ). Then, 

we obtain 

 

 

2 1

2
2 1 2

1

( 2)
1

2 ln

i T T

T
i T T T

T


 

 

 

. 

Substituting the numerical values of i, T1, T2 and R, we obtain 

 

 

(5 2) 400 300
1 0.041 41%

400
5 400 300 2 400ln

300


 

   

  

. 

 

Example 9.2. Carnot cycle 

A heat engine is operating according to the inverted Carnot cycle. Its heater has 

a temperature of t1 = 200 °C. Determine the temperature T2 of the cooler, if the work 

done by the engine is A = 0.4 J, while the energy received by heat from the heater is  

Q1 = 1 J. 

Solution: 

We can find the temperature of the cooler using the expression for the thermal 

efficiency of the Carnot heat engine 

1 2

1

T T

T



 ;  2 1(1 )T T   . 

On the other hand, thermal efficiency of the heat engine can be expressed as the 

ratio of the amount of heat that is converted into useful mechanical work A to the 

amount of heat Q1, which is received by the working body of the heat engine from the 

environment (from the heater), i.e.,  

1

A

Q
  . 
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Comparing these expressions, we can find 

2 1 1
A

T T
Q

 
  

 
. 

Considering that T1 = 473 K, we obtain  

T2 = 284 K. 

 

Example 9.3. Entropy 

Find the change in the entropy ΔS in the result of heating of m = 100 g of water 

from the temperature t1 = 0 °C to the temperature t2 = 100 °C and subsequent 

transformation of water into vapor of the same temperature. 

Solution: 

Let us find separately the change in the entropy ΔS’ when water is heated and 

the ΔS’’ when it is transformed into vapor. The total change in the entropy is the sum 

of the ΔS’ and ΔS’’. 

As we know, the change in the entropy is expressed by the formula 

f

i

Q
S

T


   . 

Transfer of heat during heating of mass m of water equals 

δQ = mcdT, 

c is the specific heat of water, dT is the infinitesimal change in its temperature. 

Substituting the expression for δQ, we obtain formula for the change in entropy when 

water is heated: 

2

1

2

1

' ln

T

T

cmdT T
S cm

T T

 
    

 
  . 

After the calculations, we obtain ΔS’ = 132 J/K. 
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During transformation of water into vapor at the constant temperature T, the 

change in entropy can be found as 

1
''

f f

i i

dQ Q
S dQ

T T T
     , 

where Q is the amount of heat transferred during the transformation of heated water 

into vapor of the same temperature. Heat transferred to a substance of mass m during a 

phase change from liquid to gas is: 

Q rm ,   

where r is the latent heat of vaporization. So, we obtain 

''
rm

S
T

  . 

After the calculations, we obtain ΔS’’ = 605 J/K. 

The total change in the entropy during heating of water and its subsequent 

transformation into vapor is 

ΔS = ΔS’ + ΔS’’ = 737 J/K. 

 

Example 9.4. Entropy  

Find the change in entropy ΔS during isothermal expansion of m = 10 g of 

oxygen from the volume V1 = 25 liters to the volume V2 = 100 liters. 

Solution: 

Since the process is isothermal, T = const, the change in entropy can be found 

as 

1
f f

i i

dQ Q
S dQ

T T T
     . 

The amount of heat Q obtained by the gas can be found from the first law of 

thermodynamics: Q = ΔU + A. For the isothermal process ΔU = 0, therefore, 
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Q = A, 

and work A for this process is determined by the formula 

2

1

ln
m V

A RT
M V

 . 

Then, 

2

1

ln
m V

S R
M V

  .  

Substituting the numerical values, we obtain 

3 3

3 3

10 10 100 10
8.31 ln 3.60

32 10 25 10
S

 

 

 
   

 
J/K. 

 

Example 9.5. 

Two moles of an ideal gas are first isochorically cooled and then isobarically 

expanded so that the temperatre of the gas in the final state returns to its initial value. 

Find the change in the entropy of the gas if the pressure during the described process 

has changed n times. 

Solution: 

 

Figure 9.2. 

 

First, build the pV-diagram of the process. It 

consists of an isochore 1-2 and an isobar 2-3 (see 

Figure 9.2).  

Let us find separately the change in the 

entropy ΔS1-2 in the process 1-2 and the ΔS2-3 in the 

process 2-3. Then the total change in the entropy is  

ΔS = ΔS1-2 + ΔS2-3. 
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The infinitesimal change in the entropy is expressed by the formula 

Q CdT
dS

T T

 
  , 

where   is the amount of substance, C is molar heat capacity of the gas; dT is the 

change in the gas temperature. 

During the isochoric process 1-2, the amount of heat absorbed by the gas equals 

to 1 2 VQ C dT   , where 
2

V

i
C R  is the molar heat capacity at constant volume. 

Then, 
1 2

VC dT
dS

T


  , and 

2
1 2

1

lnV

T
S C

T


 
   

 
. 

According to the Charles’s law for the isochoric process, 2 2

1 1

1T p

T p n
  . Then, 

1 2 lnVS C n   . 

During the isobaric process 2-3, the amount of heat absorbed by the gas equals 

to 2 3 pQ C dT   , where 
2

2
p

i
C R


  is the molar heat capacity at constant pressure. 

Then, 2 3

pC dT
dS

T


  , and 

3
2 3

2

lnp

T
S C

T


 
   

 
. 

However, we know that the final and the initial temperatures of the gas are equal 

T3 = T1. Then, 3 1

2 2

T T
n

T T
  , and 

2 3 lnpS C n  . 

Now we can find the total change in the entropy: 
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ln ln ln ( ) lnp V p VS C n C n n C C R n         . 

 

Problems 

1. A gas is taken through the cyclic process 

described in Figure 9.3. (a) Find the net energy 

transferred to the system by heat during one 

complete cycle. (b) If the cycle is reversed—that 

is, the process follows the path ACBA—what is 

the net energy input per cycle by heat? 

 

Figure 9.3 

2. A sample of an ideal gas goes 

through the process shown in 

Figure 9.4. From A to B, the 

process is adiabatic; from B to 

C, it is isobaric with 100 kJ of 

energy entering the system by 

heat; from C to D, the process 

is isothermal; 

 

Figure 9.4. 

and from D to A, it is isobaric with 150 kJ of energy leaving the system by heat. 

Determine the difference in internal energy between B and A. 

3. An ideal gas initially at Pi, Vi, and Ti is taken 

through a cycle as shown in Figure 9.5. (a) Find the 

net work done on the gas per cycle for 1.00 mol of 

gas initially at 0°C. (b) What is the net energy 

added by heat to the gas per cycle? 

 
 

Figure 9.5. 
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4. An engine absorbs 1.70 kJ from a hot reservoir at 277°C and expels 1.20 kJ to a 

cold reservoir at 27°C in each cycle. (a) What is the engine’s efficiency? (b) How 

much work is done by the engine in each cycle? (c) What is the power output of 

the engine if each cycle lasts 0.300 s? 

5. The work done by an engine equals one-fourt h t he energ y it absorbs from a 

reservoir. (a) What is its thermal efficiency? (b) What fraction of the energy 

absorbed is expelled to the cold reservoir? 

6. A gun is a heat engine. In particular, it is an internal combustion piston engine that 

does not operate in a cycle, but comes apart during its adiabatic expansion process. 

A certain gun consists of 1.80 kg of iron. It fires one 2.40-g bullet at 320 m/s with 

an energy efficiency of 1.10%. Assume the body of the gun absorbs all the energy 

exhaust—the other 98.9%—and increases uniformly in temperature for a short time 

interval before it loses any energy by heat into the environment. Find its 

temperature increase. 

7. A Carnot engine has a power output of 150 kW. The engine operates between two 

reservoirs at 20.0°C and 500°C. (a) How much energy enters the engine by heat 

per hour? (b) How much energy is exhausted by heat per hour? 

8. An ideal gas is taken through a Carnot cycle. The isothermal expansion occurs at 

250°C, and the isothermal compression takes place at 50.0°C. The gas takes in 

1.20∙103 J of energy from the hot reservoir during the isothermal expansion. Find 

(a) the energy expelled to the cold reservoir in each cycle and (b) the net work done 

by the gas in each cycle. 

9. An ice tray contains 500 g of liquid water at 0°C. Calculate the change in entropy 

of the water as it freezes slowly and completely at 0°C. 

10. A Styrofoam cup holding 125 g of hot water at 100°C cools to room temperature, 

20.0°C. What is the change in entropy of the room? Neglect the specific heat of the 

cup and any change in temperature of the room. 

11. A power plant, having a Carnot efficiency, produces 1.00 GW of electrical power 

from turbines that take in steam at 500 K and reject water at 300 K into a flowing 



99 
 

river. The water downstream is 6.00 K warmer due to the output of the power plant. 

Determine the flow rate of the river. 

12. A 1.00-mol sample of an ideal monatomic gas is taken through the cycle shown in 

Figure 9.6. The process A → Bis a reversible isothermal expansion. Calculate (a) 

the net work done by the gas, (b) the energy added to the gas by heat, (c) the energy 

exhausted from the gas by heat, and (d) the efficiency of the cycle. (e) Explain how 

the efficiency compares with that of a Carnot engine operating between the same 

temperature extremes. 

 

Figure 9.6. 
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